1986M1. The figure above shows an 80-kilogram person standing on a 20-kilogram platform suspended by a rope passing over a stationary pulley that is free to rotate. The other end of the rope is held by the person. The masses of the rope and pulley are negligible. You may use g= 10 m/ s. Assume that friction is negligible, and the parts of the rope shown remain vertical. If the platform and the person are at rest, what is the tension in the rope? a. The person now pulls on the rope so that the acceleration of the person and the platform is 2 m/s² upward. b. What is the tension in the rope under these new conditions? Under these conditions, what is the force exerted by the platform on the person? C.

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter13: Rotation Ii: A Conservation Approach
Section: Chapter Questions
Problem 31PQ: Sophia is playing with a set of wooden toys, rolling them offthe table and onto the floor. One of...
icon
Related questions
Question
100%
Hi I need help with this problem. Can you please explain the process.
1986M1. The figure above shows an 80-kilogram person standing on a 20-kilogram platform suspended by a rope
passing over a stationary pulley that is free to rotate. The other end of the rope is held by the person. The
masses of the rope and pulley are negligible. You may use g = 10 m/ s2. Assume that friction is negligible, and
the parts of the rope shown remain vertical.
a. If the platform and the person are at rest, what is the tension in the rope?
The person now pulls on the rope so that the acceleration of the person and the platform is 2 m/s² upward.
b. What is the tension in the rope under these new conditions?
Under these conditions, what is the force exerted by the platform on the person?
C.
Transcribed Image Text:1986M1. The figure above shows an 80-kilogram person standing on a 20-kilogram platform suspended by a rope passing over a stationary pulley that is free to rotate. The other end of the rope is held by the person. The masses of the rope and pulley are negligible. You may use g = 10 m/ s2. Assume that friction is negligible, and the parts of the rope shown remain vertical. a. If the platform and the person are at rest, what is the tension in the rope? The person now pulls on the rope so that the acceleration of the person and the platform is 2 m/s² upward. b. What is the tension in the rope under these new conditions? Under these conditions, what is the force exerted by the platform on the person? C.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning