2. 2y"-3y = 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Can anyone help me do #2 and 22

5.3 Problems
Find the general solutions of the differential equations in Prob-
lems 1 through 20.
1. y" - 4y = 0
3. y" + 3y - 10y = 0
5. y" + 6y' +9y = 0
7. 4y"-12y +9y=0
9. " + 8y +25y = 0
11. y(4)-8y (3) + 16y" = 0
12. y(4) 3y (3) + 3y" - y = 0
13. 9y(3) + 12y" + 4y = 0
15. y(4)-8y"+16y = 0
17. 6y(4) + 11y" + 4y = 0
19. y(3)+y"-y'-y=0
20. y(4) +2y (3) + 3y" + 2y + y = 0 (Suggestion: Expand
(r² +r+ 1)².)
2. 2y"-3y = 0
4. 2y"-7y' + 3y = 0
6. y" + 5y + 5y = 0
8. y"-6y + 13y = 0
10. 5y (4) + 3y (3) = 0
14. y(4) + 3y"-4y = 0
16. (4) + 18y" +8ly = 0
18. y(4) 16y
=
Solve the initial value problems given in Problems 21 through
26.
21. y" - 4y + 3y = 0; y(0) = 7, y'(0) = 11
22. 9y" + 6y + 4y = 0; y(0) = 3, y'(0) = 4
23. y"-6y + 25y = 0; y(0) = 3, y'(0) = 1
24. 2y(3)-3y"-2y' = 0; y(0) = 1, y'(0) = -1, y"(0) = 3
25. 3y(3) + 2y" = 0; y(0) = -1, y'(0) = 0, y"(0) = 1
26. y(3) +10y" + 25y' = 0; y(0) = 3, y'(0) = 4, y" (0) = 5
Transcribed Image Text:5.3 Problems Find the general solutions of the differential equations in Prob- lems 1 through 20. 1. y" - 4y = 0 3. y" + 3y - 10y = 0 5. y" + 6y' +9y = 0 7. 4y"-12y +9y=0 9. " + 8y +25y = 0 11. y(4)-8y (3) + 16y" = 0 12. y(4) 3y (3) + 3y" - y = 0 13. 9y(3) + 12y" + 4y = 0 15. y(4)-8y"+16y = 0 17. 6y(4) + 11y" + 4y = 0 19. y(3)+y"-y'-y=0 20. y(4) +2y (3) + 3y" + 2y + y = 0 (Suggestion: Expand (r² +r+ 1)².) 2. 2y"-3y = 0 4. 2y"-7y' + 3y = 0 6. y" + 5y + 5y = 0 8. y"-6y + 13y = 0 10. 5y (4) + 3y (3) = 0 14. y(4) + 3y"-4y = 0 16. (4) + 18y" +8ly = 0 18. y(4) 16y = Solve the initial value problems given in Problems 21 through 26. 21. y" - 4y + 3y = 0; y(0) = 7, y'(0) = 11 22. 9y" + 6y + 4y = 0; y(0) = 3, y'(0) = 4 23. y"-6y + 25y = 0; y(0) = 3, y'(0) = 1 24. 2y(3)-3y"-2y' = 0; y(0) = 1, y'(0) = -1, y"(0) = 3 25. 3y(3) + 2y" = 0; y(0) = -1, y'(0) = 0, y"(0) = 1 26. y(3) +10y" + 25y' = 0; y(0) = 3, y'(0) = 4, y" (0) = 5
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,