21. c0phx x>0 284 CHAPTER 4 Applications of Differentia 37. h(t)= t3/4 211/4 - 2r1/4 38. g(x)= 4 39. F(x)= x4/5(x4) 40. g(0)=40 41. f(0)= 2 cos 0 sin 0 42. h(t) = 3t 43. f(x)= xe 2 44. f(x)= x 45-46 A formula for the derivative of a function How many critical numbers does f have? 10 45. f'(x)= 5e0sinx-1 46. f'(x) 1 47-62 Find the absolute maximum and absolute values of f on the given interval. 12 + 4x - x, [0, 5] 47. f(x) 48. f(x) = 5 +54x - 2x3, [0, 4] 49. f(x) 2x-3x2-12x + 1, [-2, 3] w 50. f(x)= x- 6x2+ 5, [-3, 5] 51. f(x) 3x-4x-12x2 + 1, [-2, 31 31

Question

I need help with question 39 in Section 4.1, page 284, of the James Stewart Calculus Eighth Edition textbook. I am trying to find the critical numbers for the function provided.

21. c0phx x>0
284
CHAPTER 4
Applications of Differentia
37. h(t)= t3/4
211/4
- 2r1/4
38. g(x)= 4
39. F(x)= x4/5(x4)
40. g(0)=40
41. f(0)= 2 cos 0 sin 0
42. h(t) = 3t
43. f(x)= xe
2
44. f(x)= x
45-46 A formula for the derivative of a function
How many critical numbers does f have?
10
45. f'(x)= 5e0sinx-1 46. f'(x)
1
47-62 Find the absolute maximum and absolute
values of f on the given interval.
12 + 4x - x, [0, 5]
47. f(x)
48. f(x) = 5 +54x - 2x3, [0, 4]
49. f(x) 2x-3x2-12x + 1, [-2, 3]
w
50. f(x)= x- 6x2+ 5, [-3, 5]
51. f(x) 3x-4x-12x2 + 1, [-2, 31
31

Image Transcription

21. c0phx x>0 284 CHAPTER 4 Applications of Differentia 37. h(t)= t3/4 211/4 - 2r1/4 38. g(x)= 4 39. F(x)= x4/5(x4) 40. g(0)=40 41. f(0)= 2 cos 0 sin 0 42. h(t) = 3t 43. f(x)= xe 2 44. f(x)= x 45-46 A formula for the derivative of a function How many critical numbers does f have? 10 45. f'(x)= 5e0sinx-1 46. f'(x) 1 47-62 Find the absolute maximum and absolute values of f on the given interval. 12 + 4x - x, [0, 5] 47. f(x) 48. f(x) = 5 +54x - 2x3, [0, 4] 49. f(x) 2x-3x2-12x + 1, [-2, 3] w 50. f(x)= x- 6x2+ 5, [-3, 5] 51. f(x) 3x-4x-12x2 + 1, [-2, 31 31

Expert Answer

Want to see the step-by-step answer?

See Answer

Check out a sample Q&A here.

Want to see this answer and more?

Experts are waiting 24/7 to provide step-by-step solutions in as fast as 30 minutes!*

See Answer
*Response times vary by subject and question complexity. Median response time is 34 minutes and may be longer for new subjects.
Tagged in
MathCalculus

Derivative