3.1 Two-dimensional incompressible flow can also be simulated using the vorticity w and streamfunction , instead of using the velocity and pressure variables. The vorticity field can be related to the velocity variables through the curl operation Əv du əx Əy and the velocity field (u, v) can be related to the streamfunction with მს dy U= მს Əx (3.252) Show that the pressure field can be recovered from the streamfunction using the pressure Poisson equation.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
3.1 Two-dimensional incompressible flow can also be simulated using the vorticity
w and streamfunction , instead of using the velocity and pressure variables. The
vorticity field can be related to the velocity variables through the curl operation
U
Əv
Әх
ду
and the velocity field (u, v) can be related to the streamfunction with
მს
Əy
du
მს
əx
(3.252)
Show that the pressure field can be recovered from the streamfunction using the
pressure Poisson equation.
Transcribed Image Text:3.1 Two-dimensional incompressible flow can also be simulated using the vorticity w and streamfunction , instead of using the velocity and pressure variables. The vorticity field can be related to the velocity variables through the curl operation U Əv Әх ду and the velocity field (u, v) can be related to the streamfunction with მს Əy du მს əx (3.252) Show that the pressure field can be recovered from the streamfunction using the pressure Poisson equation.
Expert Solution
steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Knowledge Booster
Fluid Kinematics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY