4.ZF1110fleae Cunglatly to ttStandandNsmelNumPause8Len atandand maCune uhdt Ahis aDaa+750EndIns9750SO0019041 Remembn to pultraclYongtae asond halcadend in tableOdds o CengmirddeLotn deaimal andpeacent Cod Knows nnd teltALATuergi15 4;15wed 1;00-40OThu 154SassThe Cumulative Standardized Normal Distribution (continued)Entry represents area under the cumulative standardizednormal distribution from -0o to Z0 ZCumulative ProbabilitiesZ0.000.010.020.090.030.080.040.050.060.070.50000.00.50400.50800.53590.53190.51200.51600.52790.51990.52390.10.53980.54380.54780.57530.57140.55170.56750.55570.55960.56360.20.57930.58320.61410.58710.61030.60640.59100.59480.59870.60260.30.61790.62170.62550.66280.65170.64800.62930.64430.64060.63310.63680.40.65540.65910.68790.68440.66640.68080.67000.67720.67360.69150.50.69500.71900.69850.72240.70190.70540.71570.70880.71230.60.72570.72910.73240.75490.73570.73890.75180.74860.74220.74540.70.75800.76120.78520.76420.78230.76730.77040.77340.77640.7794.0.80.78810.79100.79390.81330.81060.79670.79950.80230.80510.80780.90.81590.81860.82120.83890.82380.82640.83650.83400.82890.83151.00.84130.84380.84610.86210.85080.85990.84850.85540.85770.85310.86651.10.86430.86860.87290.87080.87490.87900.88100.88300.87700.89250.88691.20.88490.88880.89070.8962O.89800.91470.89970.89440.90150.91151.30.90660.90320.90490.90820.90990.91620.91310.91770.92071.40.92220.92360.92510.91920.92650.92790.92920.93060.93190.93820.93700.93940.93450.93570.94061.50.93320.94180.94290.94410.94840.94950.94630.94740.95050.95150.95251.60.94520.95350.95450.95910.95820.95990.95730.96160.95640.96080.96251.70.95540.96330.96640.96780.96710.96560.96860.96930.96410.96490.96991.80.97060.97320.97260.97380.97440.97500.97190.97560.97610.97131.90.97670.97980.9788o30.97930.98030.97830.98080.97780.98120.97722.00.98170.98300.98340.98380.98420.98460.98260.98500.98540.98212.10.98570.98710.98750.98780.98810.98680.98640.98840.98870.98612.20.98900.99040.99060.98980.99010.99090.98960.99110.98930.99132.30.99160.99270.99290.99220.99250.99310.99320.99200.99180.99340.99362.40.99410.99450.99460.99430.99480.99490.99400.99380.99510.99522.50.99610.99600.99590.99560.99570.99620.99550.99530.99632.60.99640.99690.99700.99680.99670.99710.99720.99660.99650.99732.70.99740.99770.99770.99780.99760.99790.99750.99790.99740.99802.80.99810.99840.99830.99840.99820.99850.99820.99850.99810.99862.90.99860.998740.998780.998820.998860.998890.998690.998650.998930.998970.999003.00.999160.999100.999130.999180.999060.999210.999030.999240.999263.10.999290.999380.999360.999400.999420.999440.999340.999310.999460.999483.20.999500.999550.999600.999720.999570.999580.999610.999520.999530.999623.30.999640.999650.999700.999690.999710.999680.999660.999730.999810.999743.40.999750.999760.999790.999780.999800.999810.999780.999770.999823.50.999830.999830.999860.999850.999860.999870.999850.999870.999840.999883.60.999880.999890.999900.999910.999900.999910.999890.999900.999923.70.999920.999920.999920.999930.999940.999940.999940.999930.999930.999943.80.999950.999950.999950.999960.999960.999960.999950.999950.999960.999963.90.999960.999970.999970.9999683294.0Nagative.lSubhacr0.9999966024.5Flip0.9999997135.00.9999999810, 9905.50.9999999996.0./0a0 0.2990dont pant

Question
Asked Oct 22, 2019
1 views

Can I have this completed problem explained step by step it is complete but I need more info as to how to do it or how it was done on my paper using my chart as well

4.
Z
F11
10
fleae Cung
latly to tt
StandandNsmel
Num
Pause
8
Len a
tandand ma
Cune uhdt Ahis aDaa
+750
End
Ins
9750
SO00
190
41 Remembn to pultracl
Yong
tae asond hal
cadend in table
Odds o Ceng
mirdde
Lotn deaimal and
peacent
help_outline

Image Transcriptionclose

4. Z F11 10 fleae Cung latly to tt StandandNsmel Num Pause 8 Len a tandand ma Cune uhdt Ahis aDaa +750 End Ins 9750 SO00 190 41 Remembn to pultracl Yong tae asond hal cadend in table Odds o Ceng mirdde Lotn deaimal and peacent

fullscreen
Cod Knows nnd telt
ALA
Tuergi15 4;15
wed 1;00-40O
Thu 154S
ass
The Cumulative Standardized Normal Distribution (continued)
Entry represents area under the cumulative standardized
normal distribution from -0o to Z
0 Z
Cumulative Probabilities
Z
0.00
0.01
0.02
0.09
0.03
0.08
0.04
0.05
0.06
0.07
0.5000
0.0
0.5040
0.5080
0.5359
0.5319
0.5120
0.5160
0.5279
0.5199
0.5239
0.1
0.5398
0.5438
0.5478
0.5753
0.5714
0.5517
0.5675
0.5557
0.5596
0.5636
0.2
0.5793
0.5832
0.6141
0.5871
0.6103
0.6064
0.5910
0.5948
0.5987
0.6026
0.3
0.6179
0.6217
0.6255
0.6628
0.6517
0.6480
0.6293
0.6443
0.6406
0.6331
0.6368
0.4
0.6554
0.6591
0.6879
0.6844
0.6664
0.6808
0.6700
0.6772
0.6736
0.6915
0.5
0.6950
0.7190
0.6985
0.7224
0.7019
0.7054
0.7157
0.7088
0.7123
0.6
0.7257
0.7291
0.7324
0.7549
0.7357
0.7389
0.7518
0.7486
0.7422
0.7454
0.7
0.7580
0.7612
0.7852
0.7642
0.7823
0.7673
0.7704
0.7734
0.7764
0.7794
.0.8
0.7881
0.7910
0.7939
0.8133
0.8106
0.7967
0.7995
0.8023
0.8051
0.8078
0.9
0.8159
0.8186
0.8212
0.8389
0.8238
0.8264
0.8365
0.8340
0.8289
0.8315
1.0
0.8413
0.8438
0.8461
0.8621
0.8508
0.8599
0.8485
0.8554
0.8577
0.8531
0.8665
1.1
0.8643
0.8686
0.8729
0.8708
0.8749
0.8790
0.8810
0.8830
0.8770
0.8925
0.8869
1.2
0.8849
0.8888
0.8907
0.8962
O.8980
0.9147
0.8997
0.8944
0.9015
0.9115
1.3
0.9066
0.9032
0.9049
0.9082
0.9099
0.9162
0.9131
0.9177
0.9207
1.4
0.9222
0.9236
0.9251
0.9192
0.9265
0.9279
0.9292
0.9306
0.9319
0.9382
0.9370
0.9394
0.9345
0.9357
0.9406
1.5
0.9332
0.9418
0.9429
0.9441
0.9484
0.9495
0.9463
0.9474
0.9505
0.9515
0.9525
1.6
0.9452
0.9535
0.9545
0.9591
0.9582
0.9599
0.9573
0.9616
0.9564
0.9608
0.9625
1.7
0.9554
0.9633
0.9664
0.9678
0.9671
0.9656
0.9686
0.9693
0.9641
0.9649
0.9699
1.8
0.9706
0.9732
0.9726
0.9738
0.9744
0.9750
0.9719
0.9756
0.9761
0.9713
1.9
0.9767
0.9798
0.9788
o3
0.9793
0.9803
0.9783
0.9808
0.9778
0.9812
0.9772
2.0
0.9817
0.9830
0.9834
0.9838
0.9842
0.9846
0.9826
0.9850
0.9854
0.9821
2.1
0.9857
0.9871
0.9875
0.9878
0.9881
0.9868
0.9864
0.9884
0.9887
0.9861
2.2
0.9890
0.9904
0.9906
0.9898
0.9901
0.9909
0.9896
0.9911
0.9893
0.9913
2.3
0.9916
0.9927
0.9929
0.9922
0.9925
0.9931
0.9932
0.9920
0.9918
0.9934
0.9936
2.4
0.9941
0.9945
0.9946
0.9943
0.9948
0.9949
0.9940
0.9938
0.9951
0.9952
2.5
0.9961
0.9960
0.9959
0.9956
0.9957
0.9962
0.9955
0.9953
0.9963
2.6
0.9964
0.9969
0.9970
0.9968
0.9967
0.9971
0.9972
0.9966
0.9965
0.9973
2.7
0.9974
0.9977
0.9977
0.9978
0.9976
0.9979
0.9975
0.9979
0.9974
0.9980
2.8
0.9981
0.9984
0.9983
0.9984
0.9982
0.9985
0.9982
0.9985
0.9981
0.9986
2.9
0.9986
0.99874
0.99878
0.99882
0.99886
0.99889
0.99869
0.99865
0.99893
0.99897
0.99900
3.0
0.99916
0.99910
0.99913
0.99918
0.99906
0.99921
0.99903
0.99924
0.99926
3.1
0.99929
0.99938
0.99936
0.99940
0.99942
0.99944
0.99934
0.99931
0.99946
0.99948
3.2
0.99950
0.99955
0.99960
0.99972
0.99957
0.99958
0.99961
0.99952
0.99953
0.99962
3.3
0.99964
0.99965
0.99970
0.99969
0.99971
0.99968
0.99966
0.99973
0.99981
0.99974
3.4
0.99975
0.99976
0.99979
0.99978
0.99980
0.99981
0.99978
0.99977
0.99982
3.5
0.99983
0.99983
0.99986
0.99985
0.99986
0.99987
0.99985
0.99987
0.99984
0.99988
3.6
0.99988
0.99989
0.99990
0.99991
0.99990
0.99991
0.99989
0.99990
0.99992
3.7
0.99992
0.99992
0.99992
0.99993
0.99994
0.99994
0.99994
0.99993
0.99993
0.99994
3.8
0.99995
0.99995
0.99995
0.99996
0.99996
0.99996
0.99995
0.99995
0.99996
0.99996
3.9
0.99996
0.99997
0.99997
0.999968329
4.0
Nagative
.l
Subhacr
0.999996602
4.5
Flip
0.999999713
5.0
0.999999981
0, 990
5.5
0.999999999
6.0
./0a0 0.2
990
dont pant
help_outline

Image Transcriptionclose

Cod Knows nnd telt ALA Tuergi15 4;15 wed 1;00-40O Thu 154S ass The Cumulative Standardized Normal Distribution (continued) Entry represents area under the cumulative standardized normal distribution from -0o to Z 0 Z Cumulative Probabilities Z 0.00 0.01 0.02 0.09 0.03 0.08 0.04 0.05 0.06 0.07 0.5000 0.0 0.5040 0.5080 0.5359 0.5319 0.5120 0.5160 0.5279 0.5199 0.5239 0.1 0.5398 0.5438 0.5478 0.5753 0.5714 0.5517 0.5675 0.5557 0.5596 0.5636 0.2 0.5793 0.5832 0.6141 0.5871 0.6103 0.6064 0.5910 0.5948 0.5987 0.6026 0.3 0.6179 0.6217 0.6255 0.6628 0.6517 0.6480 0.6293 0.6443 0.6406 0.6331 0.6368 0.4 0.6554 0.6591 0.6879 0.6844 0.6664 0.6808 0.6700 0.6772 0.6736 0.6915 0.5 0.6950 0.7190 0.6985 0.7224 0.7019 0.7054 0.7157 0.7088 0.7123 0.6 0.7257 0.7291 0.7324 0.7549 0.7357 0.7389 0.7518 0.7486 0.7422 0.7454 0.7 0.7580 0.7612 0.7852 0.7642 0.7823 0.7673 0.7704 0.7734 0.7764 0.7794 .0.8 0.7881 0.7910 0.7939 0.8133 0.8106 0.7967 0.7995 0.8023 0.8051 0.8078 0.9 0.8159 0.8186 0.8212 0.8389 0.8238 0.8264 0.8365 0.8340 0.8289 0.8315 1.0 0.8413 0.8438 0.8461 0.8621 0.8508 0.8599 0.8485 0.8554 0.8577 0.8531 0.8665 1.1 0.8643 0.8686 0.8729 0.8708 0.8749 0.8790 0.8810 0.8830 0.8770 0.8925 0.8869 1.2 0.8849 0.8888 0.8907 0.8962 O.8980 0.9147 0.8997 0.8944 0.9015 0.9115 1.3 0.9066 0.9032 0.9049 0.9082 0.9099 0.9162 0.9131 0.9177 0.9207 1.4 0.9222 0.9236 0.9251 0.9192 0.9265 0.9279 0.9292 0.9306 0.9319 0.9382 0.9370 0.9394 0.9345 0.9357 0.9406 1.5 0.9332 0.9418 0.9429 0.9441 0.9484 0.9495 0.9463 0.9474 0.9505 0.9515 0.9525 1.6 0.9452 0.9535 0.9545 0.9591 0.9582 0.9599 0.9573 0.9616 0.9564 0.9608 0.9625 1.7 0.9554 0.9633 0.9664 0.9678 0.9671 0.9656 0.9686 0.9693 0.9641 0.9649 0.9699 1.8 0.9706 0.9732 0.9726 0.9738 0.9744 0.9750 0.9719 0.9756 0.9761 0.9713 1.9 0.9767 0.9798 0.9788 o3 0.9793 0.9803 0.9783 0.9808 0.9778 0.9812 0.9772 2.0 0.9817 0.9830 0.9834 0.9838 0.9842 0.9846 0.9826 0.9850 0.9854 0.9821 2.1 0.9857 0.9871 0.9875 0.9878 0.9881 0.9868 0.9864 0.9884 0.9887 0.9861 2.2 0.9890 0.9904 0.9906 0.9898 0.9901 0.9909 0.9896 0.9911 0.9893 0.9913 2.3 0.9916 0.9927 0.9929 0.9922 0.9925 0.9931 0.9932 0.9920 0.9918 0.9934 0.9936 2.4 0.9941 0.9945 0.9946 0.9943 0.9948 0.9949 0.9940 0.9938 0.9951 0.9952 2.5 0.9961 0.9960 0.9959 0.9956 0.9957 0.9962 0.9955 0.9953 0.9963 2.6 0.9964 0.9969 0.9970 0.9968 0.9967 0.9971 0.9972 0.9966 0.9965 0.9973 2.7 0.9974 0.9977 0.9977 0.9978 0.9976 0.9979 0.9975 0.9979 0.9974 0.9980 2.8 0.9981 0.9984 0.9983 0.9984 0.9982 0.9985 0.9982 0.9985 0.9981 0.9986 2.9 0.9986 0.99874 0.99878 0.99882 0.99886 0.99889 0.99869 0.99865 0.99893 0.99897 0.99900 3.0 0.99916 0.99910 0.99913 0.99918 0.99906 0.99921 0.99903 0.99924 0.99926 3.1 0.99929 0.99938 0.99936 0.99940 0.99942 0.99944 0.99934 0.99931 0.99946 0.99948 3.2 0.99950 0.99955 0.99960 0.99972 0.99957 0.99958 0.99961 0.99952 0.99953 0.99962 3.3 0.99964 0.99965 0.99970 0.99969 0.99971 0.99968 0.99966 0.99973 0.99981 0.99974 3.4 0.99975 0.99976 0.99979 0.99978 0.99980 0.99981 0.99978 0.99977 0.99982 3.5 0.99983 0.99983 0.99986 0.99985 0.99986 0.99987 0.99985 0.99987 0.99984 0.99988 3.6 0.99988 0.99989 0.99990 0.99991 0.99990 0.99991 0.99989 0.99990 0.99992 3.7 0.99992 0.99992 0.99992 0.99993 0.99994 0.99994 0.99994 0.99993 0.99993 0.99994 3.8 0.99995 0.99995 0.99995 0.99996 0.99996 0.99996 0.99995 0.99995 0.99996 0.99996 3.9 0.99996 0.99997 0.99997 0.999968329 4.0 Nagative .l Subhacr 0.999996602 4.5 Flip 0.999999713 5.0 0.999999981 0, 990 5.5 0.999999999 6.0 ./0a0 0.2 990 dont pant

fullscreen
check_circle

Expert Answer

Step 1

Note:

Hey there! Thank you for the question. It was a little difficult for us to understand the question from the way it is written. We have identified the following two questions and solved them for you:

  1. In the standard normal curve, what is this area? (The shaded area in the first curve, the shading being between the values 0 and 1.96)
  2. Find, in the z-table, the odds of being the middle 50%, both in decimal and in percent.

Whatever else is written in the paper, seems to be instructions as how to solve the problem.

We have used your graph, and re-drawn it, to make the image clearer for you to understand. You can compare and see that it is the same graph.

Step 2

Question 1:

In the second image of the standard normal table, the cumulative probability corresponding to the different values of Z are given, that is, the probability, P (Z < z) values are given.

The probability needed for the shaded area is: P (0 < Z < 1.96).

This can be re-written as follows:

P (0 < Z < 1.96)

= P (Z < 1.96) – P (Z < 0).

Observe that you can write: 1.96 = 1.9 + 0.06.

Procedure for P (Z < 0):

In the table given in the image, from the very first column (column name Z), locate the value 0.0.

Along the row of 0.0, move to the right, till you are under the 1st column. Note that the 1st column is 0.00.

The probability value in this cell is 0.5000, that is, P (Z < 0) = 0.5.

Procedure for P (Z < 1.96):

In the table given in the image, from the very first column (column name ...

help_outline

Image Transcriptionclose

Figurel 0.4750 196

fullscreen

Want to see the full answer?

See Solution

Check out a sample Q&A here.

Want to see this answer and more?

Solutions are written by subject experts who are available 24/7. Questions are typically answered within 1 hour.*

See Solution
*Response times may vary by subject and question.
Tagged in

Math

Probability

Related Probability Q&A

Find answers to questions asked by student like you
Show more Q&A
add
question_answer

Q: Express the number in decimal notation. 2.69*10^-5=

A: We have to convert given scientific number to decimal number.Given number: 2.69*10^-5

question_answer

Q: Table is attached. What is P(Z &gt; 2.22)?

A: We have to find P( Z &gt; 2.22 )That is we have to find area of z to the right of 2.22

question_answer

Q: You must type your answers as single fractions like 2/32/3 (you do not need to reduce). Suppose you...

A: The provided information is,

question_answer

Q: Assume that when an adult is randomly​ selected, the probability that they do not require vision cor...

A: Given:Let’s p is the probability that they do not require vision correction is 24%.So, p=0.24.Sample...

question_answer

Q: A city council consists of eight Democrats and eight Republicans. If a committee of six people is​ s...

A: The probability of selecting two Democrats and four Republicans is,

question_answer

Q: From a group of 3 men and 4 women, a delegation of 2 is selected. What is the expected number of men...

A: Introduction:The probability model for an experiment, where k successes are obtained in n trials wit...

question_answer

Q: Two machines turn out all the products in a factory, with the first machine producing 50% of the pro...

A: We are given:50% of products are produced by first machine and 50% of products are produced by secon...

question_answer

Q: n is the sample size, p is the population proportion. if appropriate, use the central limit theorem ...

A: Computation of p(Phat&lt;0.11):It is given that n = 147; p = 0.13.Checking conditions:n×p = 147×0.13...

question_answer

Q: An oil company estimates that only 1 well in 24 will yield commercial quantities of oil. Assume that...

A: According to the provided data, the number of trials, n is 12. An oil company estimates that only 1 ...