# 5. Why, on exothermic time-temperature graph, does the temperature eventually fall? 6. How many kJ of energy are required to change 1.00 m3 of pure water by 1.0 °C Assume a perfect system. The specific heat of the water is 4.184 J/g °C. The density of water is 1.000 g/mL. 1.00 m3 = 1000 Litres 7. 2.500 grams of metal X (molar mass 65.39 g/mole) was reacted with 100.0 mL of a 1.500 M HCI solution in a coffee cup calorimeter. The temperature went from 12.50 °C to 40.50 °C. Determine the reaction enthalpy per mole of metal X. The specific heat of the solution is 4.184 J/g o°C. Assume a solution density of 1.00 g/mL and a perfect system. 8. 20.12 grams of butane, C4H10, was combusted with oxygen in a bomb calorimeter. The temperature of 0.500 kilograms of water went from 5.00 oC to 25.89 °C. The specific heat of the water is 4.184 J/g °C. Assume a solution density of 1.00 g/mL. Determine the heat (kJ) evolved per mole of butane. Assume a perfect bomb calorimeter. See pre-laboratory letter e.

Question

Question 7

### Want to see this answer and more?

Experts are waiting 24/7 to provide step-by-step solutions in as fast as 30 minutes!*

*Response times may vary by subject and question complexity. Median response time is 34 minutes for paid subscribers and may be longer for promotional offers.
Tagged in
Science
Chemistry

### Physical Chemistry

Transcribed Image Text

5. Why, on exothermic time-temperature graph, does the temperature eventually fall? 6. How many kJ of energy are required to change 1.00 m3 of pure water by 1.0 °C Assume a perfect system. The specific heat of the water is 4.184 J/g °C. The density of water is 1.000 g/mL. 1.00 m3 = 1000 Litres 7. 2.500 grams of metal X (molar mass 65.39 g/mole) was reacted with 100.0 mL of a 1.500 M HCI solution in a coffee cup calorimeter. The temperature went from 12.50 °C to 40.50 °C. Determine the reaction enthalpy per mole of metal X. The specific heat of the solution is 4.184 J/g o°C. Assume a solution density of 1.00 g/mL and a perfect system. 8. 20.12 grams of butane, C4H10, was combusted with oxygen in a bomb calorimeter. The temperature of 0.500 kilograms of water went from 5.00 oC to 25.89 °C. The specific heat of the water is 4.184 J/g °C. Assume a solution density of 1.00 g/mL. Determine the heat (kJ) evolved per mole of butane. Assume a perfect bomb calorimeter. See pre-laboratory letter e.