
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
A 1500-N uniform beam is attached to a vertical wall at one end and is supported by a cable at the other end. A 1960-N crate hangs from the far end of the beam. Using the data shown in the figure, find (a) the magnitude of the tension in the wire and the magnitudes of the (b) horizontal and (c) vertical components of the force that the wall exerts on the left end of the beam.

Transcribed Image Text:50.0
Beam
30.0
1960 N
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps with 4 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- a horizontal rod (m=5.2 kg) is hinged to a wall at the left end and three forces are acting on the rod as shown in the figure: the force of gravity (mg), a tension force (T), and the force exerted by the hinge (broken into components Fx and Fy) If theta = 35 degrees, what must T be equal to in order to keep the rod static?arrow_forwardA uniform plank of wood has a mass of 19.5kg and a length of 2.0m. A person holds the plank using both hands. The first hand exerts a downward force, F⃗ , at an end of the plank. The second hand exerts an upward force, F⃗ 2, at a distance of 50.0cm from the same end of the plank. What is the magnitude, in newtons, of the force F⃗ 2 What is the magnitude, in newtons, of the force F⃗ 1?arrow_forwardThe drawing shows a uniform horizontal beam attached to a vertical wall by a frictionless hinge and supported from below at an angle θ = 35o by a brace that is attached to a pin. The beam has a weight of 342 N. Three additional forces keep the beam in equilibrium. The brace applies a force P¯ to the right end of the beam that is directed upward at the angle θ with respect to the horizontal. The hinge applies a force to the left end of the beam that has a horizontal component H¯ and a vertical component V¯. Find the magnitudes of these three forces.arrow_forward
- 6m T 10m A 8m Figure 4 A B 6. A horizontal beam AB of mass m = 20kg is supported from end B by a cable and hinged to a A vertical wall at end A. Calculate the magnitude of the tension T in the cable when Batman, who has a mass M = 80 kg, stands midway along the beam. What are the x and y components of the force at the hinge?arrow_forwardA uniform beam has a length of 15.2 m and a mass of 37.3 kg. The beam is horizontal and resting (in equilibrium) on two supports. One of the supports is located 4.09m to the right of the beam's center of mass. The second support is located 1.96 m to the left of the beam's center of mass. How much upward force is exerted on the beam by the first support?arrow_forwardA uniform rod is attached to a wall by a hinge at its base. The rod has mass of 8.0 kg, a length of 1.8 m, is at an angle of 17° above the horizontal, and is held in place by a horizontal cord attached to the other end of the rod and bolted to the wall above the base of the rod. (a) Determine the tension in the cord. N (b) Determine the horizontal and vertical components of the force exerted on the rod by the hinge. FH = N Fv = Narrow_forward
- L = 2.0 m A diver with a mass of 43 kg is standing 1.3 m from the left end of a diving board. This diving board has a mass of 83 kg and a length of 2 meters. It is supported by a pillar that is 0.5 m from the left end (labeled F, in the figure) and a bolt that holds the left end down (labeled F2 in the figure). What is the magnitude of the force from the pillar, labeled F1. F = What is the magnitude of the force from the end of the board, labeled F2. F2 = What position could the diver stand at to make both F, and F2 a minimum? 3:45 PMarrow_forwardA uniform beam of length L = 11.7 meters and mass of 109.3 kg is pinned at one end and is being supported by a wire as shown. The wire is connected to the beam x = 3.3 meters from the pin. A person of mass 81.6 kg is standing all the way out on the edge of the beam. If θ = 17.3 degrees and φ = 79.4 degrees, what is the tension in the wire?arrow_forwardH 60° Figure 6 G M 8. A uniform rod HG of length 2L m and mass m = 2 kg is hinged at end H, as shown in Figure 6 A mass Mg=100 N is hung at the other end G. A horizontal cable at the midpoint of the rod holds it at an angle of 60° to the horizontal. The cable is under a constant tension T. (a) Draw a diagram showing all the forces acting on the rod and determine the tension T in the cable. (b) Calculate both the x and y components (Fr and F₁) of the force F at the hinge H. (c) Will the net force F at H act along the rod HG? Justify your answer.arrow_forward
- In a city park a nonuniform wooden beam 4.00 m long is suspended horizontally by a light steel cable at each end. The cable at the left-hand end makes an angle of 30.0° with the vertical and has tension 620 N. The cable at the right-hand end of the beam makes an angle of 50.0° with the vertical. As an employee of the Parks and Recreation Department, you are asked to find the weight of the beam and the location of its center of gravity.arrow_forwardA uniform 36.0-kg beam of length ℓ = 4.20 m is supported by a vertical rope located d = 1.20 m from its left end as in the figure below. The right end of the beam is supported by a vertical column. Answer parts a-b.arrow_forwardA uniform rod is attached to a wall by a hinge at its base. The rod has a mass of 8.5 kg, a length of 1.8 m, is at an angle of 21° above the horizontal, and is held in place by a horizontal cord attached to the other end of the rod and bolted to the wall above the base of the rod. (a) Determine the tension in the cord. (b) Determine the horizontal and vertical components of the force exerted on the rod by the hinge. FH %3D Fv = %3Darrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON