
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:87. Review. An electric dipole in a uniform horizontal
electric field is displaced slightly from ts equilibrium
position as shown in Figure P23.87, where θ is small
The separation of the charges is 2a, and each of the
two particles has mass m. (a) Assuming the dipole is
released from this position, show that its angular ori
entation exhibits simple harmonic motion with a
frequency
What If (b) Suppose the masses of the two charged
particles in the dipole are not the same even though
each particle continues to have charge q. Let the
masses of the particles be m and m2. Show that the fre
quency of the oscillation in this case is
E mm
2amm2
Figure P23.87
Expert Solution

Trending nowThis is a popular solution!
Step by stepSolved in 9 steps with 8 images

Knowledge Booster
Similar questions
A proton and an alpha particle (charge = 2e, mass = 6.64 1027 kg) are initially at rest, separated by 4.00 1015 m. (a) If they are both released simultaneously, explain why you cant find their velocities at infinity using only conservation of energy. (b) What other conservation law can be applied in this case? (c) Find the speeds of the proton and alpha particle, respectively, at infinity.
arrow_forward
A Van de Graaff generator is charged so that a proton at its surface accelerates radially outward at 1.52 1012 m/s3. Find (a) the magnitude of the electric force on the proton at that instant and (b) the magnitude and direction of the electric field at the surface of the generator.
arrow_forward
An electric dipole is located along the y axis as shown in Figure P24.48. The magnitude of its electric dipole moment is defined as p = 2aq. (a) At a point P, which is far from the dipole (r a), show that the electric potential is V=kepcosr2 (b) Calculate the radial component Er and the perpendicular component E of the associated electric field. Note that E = (1/r)(V/). Do these results seem reasonable for (c) = 90 and 0? (d) For r = 0? (e) For the dipole arrangement shown in Figure P24.48, express V in terms of Cartesian coordinates using r = (x2 + y2)1/2 and cos=y(x2+y2)1/2 (f) Using these results and again taking r a, calculate the field components Ex and Ey. Figure P24.48
arrow_forward
A Figure P23.65 shows two identical conducting spheres, each with charge q, suspended from light strings of length L. If the equilibrium angle the strings make with the vertical is , what is the mass m of the spheres? Figure P23.65
arrow_forward
Find an expression for the electric field at point A for the dipole source shown in Figure P24.17. Show that when y : d, the electric field is given by Ekp/y3.
arrow_forward
Two large, parallel metal plates, each of area A, are oriented horizontally and separated by a distance 3d. A grounded conducting wire joins them, and initially each plate carries no charge. Now a third identical plate carrying charge Q is inserted between the two plates, parallel to them and located a distance d from the upper plate as shown in Figure P20.84. (a) What induced charge appears on each of the two original plates? (b) What potential difference appears between the middle plate and each of the other plates? Figure P20.84
arrow_forward
A uniformly charged ring of radius R = 25.0 cm carrying a total charge of 15.0 C is placed at the origin and oriented in the yz plane (Fig. P24.54). A 2.00-g particle with charge q = 1.25 C, initially at the origin, is nudged a small distance x along the x axis and released from rest. The particle is confined to move only in the x direction. a. Show that the particle executes simple harmonic motion about the origin. b. What is the frequency of oscillation for the particle? Figure P24.54
arrow_forward
Identical thin rods of length 2a carry equal charges +Q uniformly distributed along their lengths. The rods lie along the x axis with their centers separated by a distance b 2a (Fig. P23.30). Show that the magnitude of the force exerted by the left rod on the right one is F=(keQ24a2)ln(b2b24a2) Figure P23.50
arrow_forward
The dome of a Van de Graaff generator receives a charge of 2.0 104 C. Find the strength of the electric field (a) inside the dome, (b) at the surface of the dome, assuming it has a radius of 1.0 m, and (c) 4.0 in front the center of the dome. Hint: See Section 15.5 to review properties of conductors in electrostatic equilibrium. Also, note that the points on the surface are outside a spherically symmetric charge distribution; the total charge may be considered to be located at the center of the sphere.
arrow_forward
A small rigid object carries positive and negative 3 .50-nC charges. It is oriented so that the positive charge has coordinates (1.20 mm, 1.10 mm) and the negative charge is at the point (1.40 mm. 1.30 nun), (a) Find the electric dipole moment of the object. The object is placed in an electric field E = (7.80 103 i 4.90 103 j ) N/C. (b) Find the torque acting on the object, (c) Find the potential energy of the object-field system when the object is in this orientation, (d) Assuming the orientation of the object can change. find the difference between the maximum and minimum potential energies of the system.
arrow_forward
An infinite line of positive charge lies along the y axis, with charge density = 2.00 C/m. A dipole is placed with its center along the x axis at x = 25.0 cm. The dipole consists of two charges 10.0 C separated by 2.00 cm. The axis of the dipole makes an angle of 35.0 with the x axis, and the positive charge is farther from the line of charge than the negative charge. Find the net force exerted on the dipole.
arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning


Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
