
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A 0.500-m-long brass pipe open at both ends has a fundamental frequency of 350 Hz. (a) Determine the temperature of the air in the pipe. (b) If the temperature is increased by 20.0°C, what is the new fundamental frequency of the pipe? Be sure to include the effects of temperature on both the speed of sound in air and the length of the pipe.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 6 steps with 7 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A music instrument is open only on one end. When a musician blows air in it, it is at the body temperature of 36C. If the musician places a finger to form a column of 20cm, what is the fundamental frequency of the sound produced? What is the wavelength of that sound wave?arrow_forwardAn organ pipe that is open both ends has a fundamental frequency of 382 Hz at 0 ° C. Calculate the fundamental frequency for this pipe at 35 ° C.arrow_forwardThe linear mass density of a copper, 36.0cm long cable is 0.00750kg/m.The wire is fastened at each end. The speed of sound in air is 344m/s. The wavelength ofa standing wave that is set up in the wire is 14.4cm. The wire’s tension is 254.8N. a) Which harmonic is present in the standing wave? b) ) What is the velocity of the wave in the wire? c) ) What is the frequency of the wave? d) ) How far from the wire’s end is the first anti-node?arrow_forward
- A 4.0-m-long pipe, open at both ends, is placed in a room where the temperature is T = 25°C. A speaker capable of producing variable frequencies is placed at the open end and is used to cause the tube to resonate. (a) What are the wavelength and the frequency of the fundamental frequency? (b) What are the frequency and wavelength of the first overtone?arrow_forwardSound is produced in a 1.85 length of tube. The temperature of the air is 21.0 °C. (a) Calculate the speed of sound in air (in m/s) at the temperature of 21.0 °C m/s (b) Calculate the fundamental frequency (in Hz) if the tube is closed at one end. Hz (c) Calculate the second overtone frequency (in Hz) if the tube is opened at both ends. Hzarrow_forwardA 0.485-m-long brass pipe open at both ends has a fundamental frequency of 347 Hz. (The coefficient of linear expansion for brass is 19 ✕ 10−6 °C−1.) a) Determine the temperature of the air in the pipe. b) If the temperature is increased by 22.0°C, what is the new fundamental frequency of the pipe? Be sure to include the effects of temperature on both the speed of sound in air and the length of the pipe.arrow_forward
- An organ pipe that is open at both ends has a fundamental frequency of 348 Hz at 0.0°C. What is the fundamental frequency for this pipe at 30.3°C?arrow_forward. Consider an organ pipe 1.72 m long that has one open and closed end. What is the funda- mental pitch of this pipe? Where are the nodes (relative to the closed end) for the normal mode of the air in this pipe whose frequency is 150 Hz?arrow_forwardAn organ pipe has a length of 2.45m and is open at both ends. Determine the fundamental frequency and draw what the standing wave pattern for this frequency looks like.arrow_forward
- A tube, that is open at both ends, has a length of 14.8 cm. What are the first three frequencies that will resonanate in this tube, if the temperature is 16 degrees?arrow_forwardThe ear canal can be thought of as a tube leading from the outer ear to the ear drum that is closed at one end. The typical length of an adult human ear canal is 2.5 cm. What is the fundamental resonant frequency of the ear canal? Assume the air inside it is at body temperature (37°C).arrow_forwardConsider the sound created by resonating the tube shown below. The air temperature is TC = 30.00°C . What are the wavelength, wave speed, and frequency of the sound produced?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON