
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
A cannon fires towards a mountain slope with an initial velocity of 340 m/s at 48 degrees above the horizontal and impacts on the mountainside 37 s after being fired. What are the X and Y coordinates of the cannon ball where it hits the mountain relative to its original firing point.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- To start an avalanche on a mountain slope, an artillery shell is fired with an initial velocity of 330 m/s at 46.0° above the horizontal. It explodes on the mountainside 40.0 s after firing. What are the x and y coordinates of the shell where it explodes, relative to its firing point?arrow_forwardA batter hits the baseball A with an initial velocity of vo = 91 ft/sec directly toward fielder B at an angle of 38° to the horizontal; the initial position of the ball is 2.4 ft above ground level. Fielder B requires 0.24 sec to judge where the ball should be caught and begins moving to that position with constant speed. Because of great experience, fielder B chooses his running speed so that he arrives at the "catch position" simultaneously with the baseball. The catch position is the field location at which the ball altitude is 7.9 ft. Determine the velocity of the ball relative to the fielder at the instant the catch is made. Vo 438° 2.4' Answer: VA/B = (i 204' B i+ i Next question j) ft/secarrow_forwardAn artillery shell is fired with an initial velocity of 300 m/s at 59.0° above the horizontal. To clear an avalanche, it explodes on a mountainside 46.0 s after firing. What are the x- and y-coordinates of the shell where it explodes, relative to its firing point?arrow_forward
- A space vehicle is coasting at a constant velocity of 20.5 m/s in the +y direction relative to a space station. The pilot of the vehicle fires a RCS (reaction control system) thruster, which causes it to accelerate at 0.351 m/s2 in the +x direction. After 33.2 s, the pilot shuts off the RCS thruster. After the RCS thruster is turned off, find (a) the magnitude and (b) the direction of the vehicle's velocity relative to the space station. Express the direction as an angle (in degrees) measured from the +y direction.arrow_forwardA space vehicle is coasting at a constant velocity of 17.0 m/s in the +y direction relative to a space station. The pilot of the vehicle fires a RCS (reaction control system) thruster, which causes it to accelerate at 0.291 m/s2 in the +x direction. After 54.3 s, the pilot shuts off the RCS thruster. After the RCS thruster is turned off, find (a) the magnitude and (b) the direction of the vehicle's velocity relative to the space station. Express the direction as an angle (in degrees) measured from the +y direction.arrow_forwardA projectile is launched with an initial velocity 38 m/s and an angle from the horizontal of 45°. The acceleration due to gravity is 9.81 m/s². Assume the projectile is launched from the surface of the Earth. i.e., at y (0) = 0. then the altitude of the projectile as a function of time is: y(t) = gt² + vo sin(0)t Where vo is the initial velocity. What is the maximum altitude achieved by the projectile?arrow_forward
- A space vehicle is coasting at a constant velocity of 19.3 m/s in the +y direction relative to a space station. The pilot of the vehicle fires aRCS (reaction control system) thruster, which causes it to accelerate at 0.337 m/2 in the + direction. After 59.8 s, the pilot shuts off the RCS thruster. After the RCS thruster is turned off, find (a) the magnitude and (b) the direction of the vehicle's velocity relative to the space station. Express the direction as an angle (in degrees) measured from the +y direction.arrow_forwardA student standing on a cliff that is a vertical height d = 8.0 m above the level ground throws a stone with velocity v0 = 25 m/s at an angle θ = 17 ° below horizontal. The stone moves without air resistance; use a Cartesian coordinate system with the origin at the stone's initial position. With what speed, vf in meters per second, does the stone strike the ground? Recall that the ball will have a final velocity along the y-axis and the x-axis and these components need to be added together with the Pythagorean theorem in order to find the resultant velocity.arrow_forwardYou launch a projectile at an initial speed of 57.6 m/s from the ground. After 6.00 seconds of flight, the projectile lands on the ground. At what angle above the horizontal was the projectile launched? 23.6 degrees 20.0 degrees 30.7 degrees 39.9 degreesarrow_forward
- For safety reasons, park rangers decide to start an avalanche on a mountain slope. They fire an artillery shell at an angle of 520 above the horizontal with an initial speed of 295 m/s. Thirty seconds later they see the explosion. What is the x coordinates of the shell where it explodes, relative to the firing point?arrow_forwardA person stands at the edge of a cliff and throws a rock horizontally over the edge with a speed of Vo = 22.0 m/s. The rock leaves his hand at a height of h = 46.0 m above level ground at the bottom of the cliff, as shown in the figure. Note the coordinate system in the figure, where the origin is at the bottom of the cliff, directly below where the rock leaves the hand. = i (a) What are the coordinates of the initial position of the rock? (Enter your answers in m.) хо Yo = Voy Vy y = 4o (b) What are the components of the initial velocity? (Enter your answers in m/s.) Vox m/s m/s 11 m m (c) Write the equations for the x- and y-components of the velocity of the rock with time. (Use the following as necessary: t. Assume that vx and v, are in m/s and t is in seconds. Do not include units in your answers.) oral m/s m/s Simuna wir + Accumo that y andy are in meters and it is in seconds. Do notarrow_forwardConsider a projectile being launched with an initial speed of 43 m/s at a variety of initial angles. Refer to the figure. What is the range, in meters, of the projectile if it is launched at an angle of θ1 = 79.7°? What is the range, in meters, of the projectile if it is launched at an angle of θ2 = 40.5°? What is the range, in meters, of the projectile if it is launched at an angle of θ3 = 90 − 79.7°, the complement of θ1?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON