A heat exchanger is being investigated as a waste heat recovery device. A heat exchanger is common device for using a hot fluid to heat a cold fluid without the fluids mixing.  The following information is known.  The cold fluid stream of liquid A enters at 294.2 K and leaves the device at a temperature of 320.91 K.  Liquid A flows at a rate of 0.006 Kg/s and has a specific heat of 4180 J/(Kg K).  Liquid B enters the device at a temperature of 350.2 K.  Liquid B flows at a rate of 0.005 Kg/s and has a specific heat of 3900 J/(Kg K  The dead state is at 293.2 K and 1 bar.  The device is adiabatic and the pressure losses are neglected in this problem.  Both liquids are incompressible materials.Calculate the second law efficiency for this device. The exergy product is the exergy increase in liquid A and the exergy input is the exergy change in liquid B.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter10: Heat Exchangers
Section: Chapter Questions
Problem 10.32P
icon
Related questions
Question

A heat exchanger is being investigated as a waste heat recovery device. A heat exchanger is common device for using a hot fluid to heat a cold fluid without the fluids mixing.  The following information is known.  The cold fluid stream of liquid A enters at 294.2 K and leaves the device at a temperature of 320.91 K.  Liquid A flows at a rate of 0.006 Kg/s and has a specific heat of 4180 J/(Kg K).  Liquid B enters the device at a temperature of 350.2 K.  Liquid B flows at a rate of 0.005 Kg/s and has a specific heat of 3900 J/(Kg K  The dead state is at 293.2 K and 1 bar.  The device is adiabatic and the pressure losses are neglected in this problem.  Both liquids are incompressible materials.Calculate the second law efficiency for this device. The exergy product is the exergy increase in liquid A and the exergy input is the exergy change in liquid B.

Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Heat Exchangers
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning