Question
A monatomic ideal gas initially fills a V0 = 0.45 m3 container at P0 = 85 kPa. The gas undergoes an isobaric expansion to V1 = 1.1 m3. Next it undergoes an isovolumetric cooling to its initial temperature T0. Finally it undergoes an isothermal compression to its initial pressure and volume.
Calculate the work done by the gas, W1, in kilojoules, during the isobaric expansion (first process).
Calculate the heat absorbed Q1, in kilojoules, during the isobaric expansion (first process).
Write an expression for the change in internal energy, ΔU1 during the isobaric expansion (first process).
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps

Knowledge Booster
Similar questions
- The heat engine shown in the figure uses 2.0 mol of a monatomic gas as the working substance. (Figure 1) igure p (kPa) 600- 400 200 0 0 0.025 0.050 V (m³) 1 of 1 Part E part. What is the engine's thermal efficiency? Express your answer using two significant figures. η = Submit VE ΑΣΦ Request Answer ? %arrow_forwardAn ideal gas initially at 305 K undergoes an isobaric expansion at 2.50 kPa. The volume increases from 1.00 m3 to 3.00 m3 and 10.8 kJ is transferred to the gas by heat. (a) What is the change in internal energy of the gas? kJ(b) What is the final temperature of the gas? Karrow_forwardA piston-cylinder assembly contains 0.7 lb of air initially at a pressure of 30 lbf/in² and a temperature of 100°F. The air is heated at constant pressure until its volume is doubled. Assume the ideal gas model with constant specific heat ratio, k = 1.4. Determine the work and heat transfer, in Btu.arrow_forward
- The PV diagram shows the compression of 40.9 moles of an ideal monoatomic gas from state A to state B. Calculate Q, the heat added to the gas in the process A to B. Data: PA= 1.90E+5 N/m2 VA= 1.83E+0 m3 PB= 1.01E+5 N/m2 VB= 8.90E-1 m3›44arrow_forwardQuestion 1. An ideal diatomic gas contracts from 1.25 m³ to 0.500 m³ at a constant pressure of 1.50 x 10°P.. Draw a PV diagram and name this process that occurs at constant pressure. If the initial temperature is 425 K, calculate (a) the work done on the gas, (b) the change in internal energy of the gas, (c) the energy transfer, Q, and, (d) the final temperature.arrow_forwardA particular thermodynamic cycle acting on a monatomic ideal gas (y = 1.67) includes an isobaric expansion, an isochoric cooling, and then a isothermic contraction. The PV diagram is shown in the image below. P V The isobaric expansion occurs at a pressure of 1.8 × 105 Pa and changes the volume of the gas from 6.7 x 10-2 m³ to 13.08 × 102m³. What is the efficiency of the process?arrow_forward
- A monatomic ideal gas initially fills a V0 = 0.45 m3 container at P0 = 85 kPa. The gas undergoes an isobaric expansion to V1 = 1.4 m3. Next it undergoes an isovolumetric cooling to its initial temperature T0. Finally it undergoes an isothermal compression to its initial pressure and volume. 1 Calculate the work done by the gas, W1, in kilojoules, during the isobaric expansion (first process). 2 Calculate the heat absorbed Q1, in kilojoules, during the isobaric expansion (first process). 3 Write an expression for the change in internal energy, ΔU1 during the isobaric expansion (first process). 4 Calculate the work done by the gas, W2, in kilojoules, during the isovolumetric cooling (second process). 5 Calculate the heat absorbed Q2, in kilojoules, during the isovolumetric cooling (second process). 6 Calculate the change in internal energy by the gas, ΔU2, in kilojoules, during the isovolumetric cooling (second process). 7 Calculate the work done by the gas, W3, in kilojoules,…arrow_forwardAs shown below, a nonideal gas goes through the cycle ABCA. During the process AB, 71.5 J of heat was added to the gas. During the process BC, 8.2 J of heat was removed from the gas. Determine WABCA & QCA. WABCA = QCA P(N/m²) 10 2 2 A 4 6 8 B с 10 V (m³)arrow_forwardA particular thermodynamic cycle acting on a monatomic ideal gas (y = 1.67) includes an isobaric expansion, an isochoric cooling, and then a isothermic contraction. The PV diagram is shown in the image below. P V The isobaric expansion occurs at a pressure of 2.265 × 105 Pa and changes the volume of the gas from 5.9 × 10 2 m³ to 10.98 × 10-2 m³. What is the efficiency of the process?arrow_forward
arrow_back_ios
arrow_forward_ios