College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A particle of mass 4 kg is undergoing one-dimensional motion. It is subject to a constant force of 45 N, and has an initial speed of 8 m/s. The force is parallel to the initial velocity, both of which are directed in the positive direction along the axis of motion. What is the displacement X in meters , of the particle between t=0, and t=5?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block with mass m = 14.9 kg slides down an inclined plane of slope angle 18.8o with a constant velocity. It is then projected up the same plane with an initial speed 2.95 m/s. How far up the incline will the block move before coming to rest?arrow_forwardProblem 2: An object is thrown off the top of a 38-m tall building with a velocity of 350 m/s at an angle of 8.2° with respect to the horizontal. Part (a) How long is the object in the air in seconds? Numeric : A numeric value is expected and not an expression. t = Part (b) What is the maximum height the object reaches above the ground in meters? Numeric : A numeric value is expected and not an expression. hmax = Part (c) What is the horizontal distance the object covers in meters? Numeric : A numeric value is expected and not an expression. Ax =.arrow_forwardA rock of mass 51.2 kg accidentally breaks loose from the edge of a cliff and falls straight down. The magnitude of the air resistance that opposes its downward motion is 15.7 N. What is the magnitude of the acceleration of the rock?arrow_forward
- A ball is thrown eastward into the air from the origin (in the direction of the positive x-axis). The initial velocity is 40 i +64 k, with speed measured in feet per second. The spin of the ball results in a southward acceleration of 4 ft/s2, so the acceleration vector is a = -4 j - 32 k. Where does the ball land? (Round your answers to one decimal place.) X ft from the origin at an angle of 5.7 X from the eastern direction toward the south. 80.4 With what speed does the ball hit the ground? (Round your answer to one decimal place.) 61.3 X ft/s Submit Answerarrow_forwardA bicycle travels 6.70 km due east in 0.240 h, then 14.40 km at 15.0° east of north in 0.310 h, and finally another 6.70 km due east in 0.240 h to reach its destination. The time lost in turning is negligible. Assume that east is in the +x-direction and north is in the +y-direction. What is the magnitude of the average velocity for the entire trip? What is the direction of the average velocity for the entire trip? Enter the answer as an angle in degrees north of east.arrow_forwardAn object has an initial velocity of 29.0 m/s at 95.0° and an acceleration of 1.90 m/s2 at 200.0°. Assume that all angles are measured with respect to the positive x-axis. (a) Write the initial velocity vector and the acceleration vector in unit vector notation. (b) If the object maintains this acceleration for 12.0 seconds, determine the average velocity vector over the time interval. Express your answer in your unit vector notation.arrow_forward
- A point particle of mass m = 1.8 kg moves according to the position function: r(t) = xtai + ytbj + ztck, where t denotes time and x, y, z, a, b, and c are constants such that the exponents are positive integers and the position function has the dimension of length. Part (a) We can write the particle’s velocity function in the form v(t) = ntdi + otej + ptgk. Enter an expression for n in terms of x, y, z, a, b, and c. Part (b) The particle’s velocity function will have the form v(t) = ntdi + otej + ptgk. Enter an expression for d in terms of x, y, z, a, b, and c. Part (c) Here is a set of parameter values for the motion of the particle: m = 1.8 kg, x = 1.8 m/s0, y = 2.4 m/s1, z = 0.15 m/s2, a = 0, b = 1, c = 2. Calculate the x-component of the particle’s angular momentum, in units of kg˙m2/s, about the origin at time t = 1 s. Part (d) Use the same set of parameter values (m = 1.8 kg, x = 1.8 m/s0, y = 2.4 m/s1, z = 0.15 m/s2, a = 0, b = 1, c = 2) to calculate the y-component of…arrow_forward7:31 a 4 O 0令ll回 10. The displacement of the object between t = 0 and t = 4 s is: (A) 22 m (B) 28 m (C) 40 m (D) 42 m (E) 60 m Velocity (mis) Time (b a e 11. The above graph represents the velocity as a function of time of a moving object. What is the net displacement between t = 0 s and t = 4 s? (A) Om (B) 16 m (C) 24 m (D) 36 m (E) 48 m Acceleration vs Time Time (s) aarrow_forwardA particle's position is given by z(t) = −(7.30 m/s2)t2 for t ≥ 0. (Express your answer in vector form.) (a) Find the particle's velocity at t = 2.50 s and t = 3.25 s. (b) What is the particle's average velocity during the time interval from t = 2.50 s to t = 3.25 s?arrow_forward
- part e is what im most confused about finding (e)What is the average velocity between t = 1.0 s and t = 2.0 s (in m/s)? (Express your answer in vector form.)arrow_forwardEach of the following vectors is given in terms of its xx- and yy-components.arrow_forwardA boxer's fist and glove have a mass of m = 1.04 kg. The boxer's fist can obtain a speed of v = 9.25 m/s in a time of t = 0.21 s. Write a symbolic expression for the magnitude of the average acceleration, aave, of the boxer's fist, in terms of the variables provided. Find the magnitude of the average acceleration, aave, in meters per square second. Write an expression for the magnitude of the average net force, Fb, that the boxer must apply to his fist to achieve the given velocity. (Write the expression in terms of m, v and t.) What is the numerical value of Fb, in newtons?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON