Glencoe Physics: Principles and Problems, Student Edition

1st Edition

ISBN: 9780078807213

Author: Paul W. Zitzewitz

Publisher: Glencoe/McGraw-Hill

*expand_more*

*expand_more*

*format_list_bulleted*

#### Concept explainers

Question

4-

Expert Solution

Trending nowThis is a popular solution!

Step by stepSolved in 2 steps with 2 images

Knowledge Booster

Learn more about

Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions

A raindrop of mass 3.35 10-5 kg falls vertically at constant speed under the influence of gravity and air resistance. Model the drop as a particle. As it falls 100 in, what is the work (lone on the raindrop (a) by the gravitational force and (b) by air resistance?

*arrow_forward*

A small block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of a frictionless, hemispherical bowl of radius R = 30.0 cm (Fig. P8.43). Calculate (a) the gravitational potential energy of the block-Earth system when the block is at point relative to point . (b) the kinetic energy of the block at point . (c) its speed at point B, and (d) its kinetic energy and the potential energy when the block is at point . Figure P8.43 Problems 43 and 44.

*arrow_forward*

Explain why it is easier to climb a mountain on a zigzag path rather than one straight up the side. Is your increase in gravitational potential energy the same in both cases? Is your energy consumption the same in both?

*arrow_forward*

Spiderman, whose mass is 80.0 kg, is dangling on the free end of a 12.0-m-long rope, the other end of which is fixed to a tree limb above. By repeatedly bending at the waist, he is able to get the rope in motion, eventually getting it to swing enough that he can reach a ledge when the rope makes a 60.0 angle with the vertical. How much work was done by the gravitational force on Spiderman in this maneuver?

*arrow_forward*

A mechanic pushes a 2.50 103-kg car from rest to a speed of v, doing 5.00 103 J of work in the process. During this time, the car moves 25.0 m. Neglecting friction between car and road, find (a) v and (b) the horizontal force excited on the car.

*arrow_forward*

Which of the following is a unit of work? (4.1) (a) W (b) J s (c) N/s (d) N m

*arrow_forward*

A raindrop of mass 3.35 105 kg falls vertically at constant speed under the influence of gravity and air resistance. Model the drop as a particle. As it falls 100 m, what is the work done on the raindrop (a) by the gravitational force and (b) by air resistance?

*arrow_forward*

Review. You can think of the workkinetic energy theorem as a second theory of motion, parallel to Newtons laws in describing how outside influences affect the motion of an object. In this problem, solve parts (a), (b), and (c) separately from parts (d) and (e) so you can compare the predictions of the two theories. A 15.0-g bullet is accelerated from rest to a speed of 780 m/s in a rifle barrel of length 72.0 cm. (a) Find the kinetic energy of the bullet as it leaves the barrel. (b) Use the workkinetic energy theorem to find the net work that is done on the bullet. (c) Use your result to part (b) to find the magnitude of the average net force that acted on the bullet while it was in the barrel. (d) Now model the bullet as a particle under constant acceleration. Find the constant acceleration of a bullet that starts from rest and gains a speed of 780 m/s over a distance of 72.0 cm. (e) Modeling the bullet as a particle under a net force, find the net force that acted on it during its acceleration. (f) What conclusion can you draw from comparing your results of parts (c) and (e)?

*arrow_forward*

Integrated Concepts (a) What force must be supplied by an elevator cable to produce an acceleration of 0.800 m/s2 against a 200-N frictional force, if the mass of the loaded elevator is 1500 kg? (b) How much work is done by the cable in lifting the elevator 20.0 m? (c) What is the final speed of the elevator if it starts from rest? (d) How much work went into thermal energy?

*arrow_forward*

A student who weighs 556 N climbs a stairway (vertical height of 4.0 m) in 25 s. (a) How much work is done? (b) What is the power output of the student?

*arrow_forward*

Two stones, one with twice the mass of the other, are thrown straight up and rise to the same height h. Compare their changes in gravitational potential energy (choose one): (a) They rise to the same height, so the stone with twice the mass has twice the change in gravitational potential energy. (b) They rise to the same height, so they have the same change in gravitational potential energy. (c) The answer depends on their speeds at height h.

*arrow_forward*

When the height of an object is changed, the gravitational potential energy ___. (4.2) (a) increases (b) decreases (c) depends on the reference point (d) remains constant

*arrow_forward*

*arrow_back_ios*

- SEE MORE QUESTIONS

*arrow_forward_ios*

Recommended textbooks for you

Glencoe Physics: Principles and Problems, Student...

Physics

ISBN:9780078807213

Author:Paul W. Zitzewitz

Publisher:Glencoe/McGraw-Hill

An Introduction to Physical Science

Physics

ISBN:9781305079137

Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres

Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text

Physics

ISBN:9781133104261

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...

Physics

ISBN:9781305116399

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...

Physics

ISBN:9781133939146

Author:Katz, Debora M.

Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...

Physics

ISBN:9781337553292

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...

Physics

ISBN:9780078807213

Author:Paul W. Zitzewitz

Publisher:Glencoe/McGraw-Hill

An Introduction to Physical Science

Physics

ISBN:9781305079137

Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres

Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text

Physics

ISBN:9781133104261

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...

Physics

ISBN:9781305116399

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...

Physics

ISBN:9781133939146

Author:Katz, Debora M.

Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...

Physics

ISBN:9781337553292

Author:Raymond A. Serway, John W. Jewett

Publisher:Cengage Learning