A student performs a standard two-slit interference experiment and carefully sketches the observed interference pattern. The red colored pencil used by the student may not precisely match the actual color of the coherent light source. The position of the second-order maximum, corresponding to two full wavelengths of path difference from the two slits, is most nearly 35.0cm. The position of the third-order minimum of intensity, corresponding to two and one-half wavelengths of path difference for rays arriving from the two slits, is most nearly 43.8cm. 1. Given that the two narrow slits in the barrier are separated by 10.0μm10.0μm and the distance between the barrier and the screen is 2.55 m, what is the wavelength, in nanometers, of the coherent light source used to create the interference pattern?  2. The student wishes to repeat the using different sli

Glencoe Physics: Principles and Problems, Student Edition
1st Edition
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Paul W. Zitzewitz
Chapter18: Refraction And Lenses
Section18.1: Refraction Of Light
Problem 9SSC
icon
Related questions
Question

A student performs a standard two-slit interference experiment and carefully sketches the observed interference pattern. The red colored pencil used by the student may not precisely match the actual color of the coherent light source. The position of the second-order maximum, corresponding to two full wavelengths of path difference from the two slits, is most nearly 35.0cm. The position of the third-order minimum of intensity, corresponding to two and one-half wavelengths of path difference for rays arriving from the two slits, is most nearly 43.8cm.

1. Given that the two narrow slits in the barrier are separated by 10.0μm10.0μm and the distance between the barrier and the screen is 2.55 m, what is the wavelength, in nanometers, of the coherent light source used to create the interference pattern? 

2. The student wishes to repeat the using different slit separations. What is the smallest slit separation, in micrometers, that produces a first-order maximum? 

3. The student wishes to create a pattern that shows exactly 11 bright fringes to either side of the principal maximum. The screen can be made as wide as necessary, but the distance to the screen remains 2.55 m, and the wavelength is the same as calculated previously. What slit separation, in micrometers, would achieve this result? 

-50.0 -40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0 50.0
y (cm)
Transcribed Image Text:-50.0 -40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0 50.0 y (cm)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Diffraction of light
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
An Introduction to Physical Science
An Introduction to Physical Science
Physics
ISBN:
9781305079137
Author:
James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning