
MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A student used multiple
ANOVA |
|
|
|
df |
SS |
Regression |
3 |
45.9634 |
Residual |
11 |
2.6218 |
Total |
|
|
|
Coefficients |
Standard Error |
Intercept |
0.0136 |
|
x1 |
0.7992 |
0.074 |
x2 |
0.2280 |
0.190 |
x3 |
-0.5796 |
0.920 |
- Write out the estimated regression equation for the relationship between the variables.
- Compute coefficient of determination. What can you say about the strength of this relationship?
- Carry out a test to determine whether y is significantly related to the independent variables. Use a 5% level of significant
- Carry out a test to see if x3 and y are significantly related. Use a 5% level of significance.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 4 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- In a multiple regression analysis involving an intercept, 15 independent variables and 200 observations, Total SS = 800 and Residual SS = 240. Adjusted R-squared isarrow_forwardConsider a linear regression model that relates school expenditures and family background to student performance in Massachusetts using 224 school districts. The response variable is the mean score on the MCAS (Massachusetts Comprehensive Assessment System) exam given in May 1998 to 10th-graders. Four explanatory variables are used: (1) STR is the student-to-teacher ratio, (2) TSAL is the average teacher’s salary, (3) INC is the median household income, and (4) SGL is the percentage of single family households. The Excel Regression output for the sample regression equation is given below. (a) What proportion of the variation in MCAS score is explained by the explanatory variables? (b) At the 5% level, are the explanatory variables jointly significant in explaining MCAS score? Explain briefly. (c) At the 5% level, which variables are individually significant at predicting MCAS score? Explain briefly. (d) Suppose a second regression model (Model 2) was generated using only…arrow_forwardIf a scatterplot is created in excel, and a line of regression is fit along with a derived functional form, what does it mean to describe and interpret them? What conclusions would be made about relationships between two recorded variables?arrow_forward
- A student used multiple regression analysis to study how family spending (y) is influenced by income (x1), family size (x2), and additions to savings (x3). The variables y, x1, and x3 are measured in thousands of dollars. The following results were obtained. ANOVA df SS Regression 3 45.9634 Residual 11 2.6218 Total Coefficients Standard Error intercept 0.0136 x1 0.7992 0.074 x2 0.2280 0.190 x3 -0.5796 0.920 answer please : 1: Carry out a test to see if x3 and y are significantly related. Use a 5% level of significance.arrow_forwardA researcher has developed a regression model from fourteen pairs of data points. He wants to test to determine if the slope is significantly different from zero. He uses a two-tailed test and a = 0.01. The critical tablet value is 2.718 3.012 2.650 O 3.055 O 2.168arrow_forwardA student used multiple regression analysis to study how family spending (y) is influenced by income (x) family size (x2), and addition to savings(x3). The variables y, x1, and x3. The variables y, x1, and x3 are measured in thousands of dollars . The following results were obtained. ANOVA df SS Regression 3 45.9634 Residual 11 2.6218 Total Coefficient Standard Error Intercept 0.0136 X1 0.7992 0.074 X2 0.2280 0.190 X3 -0.5796 0.920 Write out the estimated regression equation for the relationship between the variables. Compute coefficient of determination. What can you say about the strength of this relationship? Carry out a test to determine whether y is significantly related to the independent variables. Use a 5% level of significant. Carry out a test to see if X3 and y are significantly related. Use a 5% level of significancearrow_forward
- The service regresses the number of complaints lodged against an employee last year on the hourly wage of the employee for the year. The analyst ran a simple linear regression shown below. Table 7: Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .854a .730 .695 6.6235 a. Predictors: (Constant), Hourly Wage Table 8: ANOVA ANOVAb Model Sum of Squares df Mean Square F Sig. 1 Regression 1918.458 1 1918.458 129.783 .000a Residual 709.567 48 14.782 Total 2628.025 49 a. Predictors: (Constant), Hourly Wage b. Dependent Variable: Number of Complaints Table 9: Coefficients Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig. B Std. Error Beta 1 (Constant) 20.2 4.357 4.636 .000 Hourly Wage -1.20 .088 -.946 -13.636 .000 a. Dependent Variable: Number of…arrow_forwardA student used multiple regression analysis to study how family spending (y) is influenced by income (x1), family size (x2), and additions to savings(x3). The variables y, x1, and x3 are measured in thousands of dollars. The following results were obtained. ANOVA df SS Regression 3 45.9634 Residual 11 2.6218 Total Coefficients Standard Error Intercept 0.0136 x1 0.7992 0.074 x2 0.2280 0.190 x3 -0.5796 0.920 Write out the estimated regression equation for the relationship between the variables. Compute coefficient of determination. What can you say about the strength of this relationship? Carry out a test to determine whether y is…arrow_forwardThe local utility company surveys 12 randomly selected customers. For each survey participant, the company collects the following: annual electric bill (in dollars) and home size (in square feet). Output from a regression analysis appears below: Bill 13.45 + 4.39*Size Coefficients Estimate Std. Error (Intercept) 13.45 Size 4.39 0.54 0.2 We are 90% confident that the mean annual electric bill increases by between dollars and dollars for every additional square foot in home size. Round your answers to three decimal places and enter in increasing order.arrow_forward
- Consider the following computer output from a multiple regression analysis relating the cost of car insurance to the variables: number of car accidents, driver's credit score, and safety rating of the car. Intercept Car Accidents (In last 3 years) Credit Score Safety Rating Answer Coefficients 933 167.94 - 102.63 -199.18 Does the sign of the coefficient for the variable credit score make sense? Coefficients Standard Error 95.65 17.99 10.89 19.98 t Stat P-value 9.754 0.0000 9.335 0.0000 -9.424 0.0000 -9.969 0.0000 O Yes, because it is expected that as the credit score increases then the cost should decrease. O No, because it is expected that as the credit score increases then the cost should decrease. O Yes, because it is expected that as the credit score increases then the cost should also increase. O No, because it is expected that as the credit score increases then the cost should also increase. Tables Keypad Keyboard Shortcutsarrow_forwardLet's study the relationship between brand, camera resolution, and internal storage capacity on the price of smartphones. Use α = .05 to perform a regression analysis of the Smartphones01CS dataset, and then answer the following questions. When you copy and paste output from MegaStat to answer a question, remember to choose to "Keep Formatting" to paste the text. a. Did you find any evidence of multicollinearity and variance inflation among the predictors. Explain your answer using a VIF analysis. b. Copy and paste the normal probability plot for your analysis. Is there any evidence that the errors are not normally distributed? Explain. c. Copy and paste the Residuals vs. Predicted Y-values. Does the pattern support the null hypothesis of constant variance for the errors? Explain. d. Study the residuals analysis. Which observations, if any, have unusual residuals? e. Study the residuals analysis. Calculate the leverage statistic. Which observations, if any, are high leverage…arrow_forwardA simple linear regression model was created to examine the relationship between the age of patients in years (i.e. the independent variable) and the patients' scores on a questionnaire that measures quality of life (i.e. the dependent variable). There were n=20 patients in the study, and some of the results of the regression are presented below: Estimated slope = -0.64 Standard error of the slope = 0.52 Estimated intercept = 42.0 Standard error of the intercept = 13.6 Based on these results, what would be the expected quality of life score for a patient who is 30 years old? Question 3 options: 61.2 22.8 1260.64 29.2arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman

MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc

Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning

Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning

Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON

The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman