
Glencoe Physics: Principles and Problems, Student Edition
1st Edition
ISBN: 9780078807213
Author: Paul W. Zitzewitz
Publisher: Glencoe/McGraw-Hill
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
A weight W hangs on a frictionless ring over a rope as shown. The rope makes the same angle from horizontal on either side. What is the tension in the rope?

Transcribed Image Text:### Diagram of a Suspended Load with Angled Ropes
In the diagram provided, a blue square load is suspended by two ropes that extend upward at angles to two fixed points on opposite sides.
#### Key Features:
1. **Load:**
- Represented by a blue square.
- Hangs centrally between the two supports.
2. **Ropes:**
- Each rope is depicted as a straight line extending from the top corners of the blue square to fixed points.
- The ropes form identical angles \( \theta \) with the horizontal axis.
3. **Angle \( \theta \):**
- Both ropes make an angle \( \theta \) with the horizontal line. This angle is indicative of the tension distribution in the ropes supporting the load.
This setup is commonly analyzed in physics to understand tension forces in ropes and how they distribute a load. The angle \( \theta \) is crucial in calculating the forces experienced by each component of the system.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A filled treasure chest (m = 375 kg) with a long rope tied around its center lies in the middle of a room. Dirk wishes to drag the chest, but there is friction between the chest and the floor with s = 0.52. If the angle between the rope and the floor is 30.0, what is the magnitude of the tension required to just get the chest moving?arrow_forwardIn Problem 10, the mass of the sign is 25.4 kg, and the mass of the potted plant is 66.7 kg. a. Assuming the objects are in equilibrium, determine the magnitude of the static friction force experienced by the potted plant. b. What is the maximum value of the static friction force if the coefficient of static friction between the pot and the roof is 0.572?arrow_forwardJamal and Dayo are lifting a large chest, weighing 207 lb, by using the two rope handles attached to either side. As they lift and hold it up so that it is motionless, each handle makes a different angle with respect to the vertical side of the chest (Fig. P5.76). If the angle between Jamals handle and the vertical side is 25.0 and the angle between Dayos handle and the vertical side of the chest is 30.0, what are the tensions in each handle? FIGURE P5.76arrow_forward
- A makeshift sign hangs by a wire that is extended over an ideal pulley and is wrapped around a large potted plant on the roof as shown in Figure P6.10. When first set up by the shopkeeper on a sunny and dry day, the sign and the pot are in equilibrium. Is it possible that the sign falls to the ground during a rainstorm while still remaining connected to the pot? What would have to be true for that to be possible? FIGURE P6.10 Problems 10 and 11.arrow_forwardAn iron bolt of mass 65.0 g hangs from a string 35.7 cm long. The top end of the string is fixed. Without touching it, a magnet attracts the bolt so that it remains stationary, but is displaced horizontally 28.0 cm to the tight from the previously vertical line of the string. The magnet is located to the right of the bolt and on the same vertical level as the bolt in the final configuration. (a) Draw a free-body diagram of the bolt. (b) Find the tension in the string, (c) Find the magnetic force on the bolt.arrow_forwardTo maintain a constant speed, the force provided by a car’s engine must equal the drag force plus the force of friction of the road (the rolling resistance). (a) What are the drag forces at 70 km/h and 100 km/h for a Toyota Camry? (Drag area is 0.70m2 ) (b) What is the drag force at 70 km/h and 100 km/h for a Hummer H2? (Drag area is 2.44m2 ) Assume all values are accurate to three significant digits.arrow_forward
- Part of riding a bicycle involves leaning at the correct angle when making a turn, as seen below. To be stable, the force exerted by the ground must be on a line going through the center of gravity. The force on the bicycle wheel can be resolved into two perpendicular components—friction parallel to the road (this must supply the centripetal force) and the vertical normal force (which must equal the system’s weight). (a) Show that (as defined as shown) is related to the speed vand radius of curvature rof the turn in the same way as for an ideally banked roadway—that is, =tan1(v2/rg) . (b) Calculate for a 12.0-m/s turn of radius 30.0 m (as in a race).arrow_forwardA One end of a metal rod of weight Fg and length L presses against a corner between a wall and the floor (Fig. P14.64). A rope is attached to the other end of the rod. Find the magnitude of the tension in the rope if the angle between the rod and the rope is 90.arrow_forwardA block lies motionless on a horizontal tabletop. You apply a force Fapp horizontally to the block, but it does not move. What can you say about the relative sizes and magnitudes of Fapp, the static friction force between the block and the table, and the kinetic friction force between the block and the table?arrow_forward
- The board sandwiched between two other boards in Figure P4.91 weighs 95.5 N. If the coefficient of friction between the boards is 0.663, what must be the magnitude of the compression forces (assumed to be horizontal) acting on both sides of the center board to keep it from slipping? Figure P4.91arrow_forwardStarting from rest, a rectangular toy block with mass 300 g slides in 1.30 s all the way across a table 1.20 m in length that Zak has tilted at an angle of 42.0 to the horizontal. a. What is the magnitude of the acceleration of the toy block? b. What is the coefficient of kinetic friction between the block and the table? c. What are the magnitude and direction of the friction force acting on the block? d. What is the speed of the block when it is at the end of the table, having slid a distance of 1.20 m?arrow_forwardA worker is attempting to lift a 55.0-kg palette of bricks resting on the ground by means of a rope attached to a pulley. a. Before the worker pulls on the rope, what is the force exerted by the ground on the palette? b. The worker exerts a force of 295 N downward on his end of the rope. What is the force exerted by the ground on the palette? c. If the worker doubles the downward force, what is the force exerted by the ground on the palette?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning