Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 7 steps with 7 images
Knowledge Booster
Similar questions
- 1. The two prominent yellow lines in the spectrum of sodium result from transitions to the ground state from the 3p state with the electron spin-up, and from the 3p state with the electron spin-down. The wavelengths these two lines are 589.0 nm and 589.6 nm. (a) Calculate the energies in eV of the photons corresponding to these wavelengths, and the difference in energy of these photons AE. (b) The energy difference you found in part (a) is due to the spin-orbit effect. An electron in the 3p state of sodium experiences an internal magnetic field B, due to the orbital angular momentum. For a magnetic field B₁, the spin-orbit energy splitting is AE = 2µBB₁, where B is the Bohr magneton. Find the orbital magnetic field By from the energy difference AE you found in part (a).arrow_forward10. A singly ionized helium atom is in the ground state. It absorbs energy and makes a transition to the n = 3 excited state. The ion returns to the ground state by emitting three possible photons. What is the wavelength of the highest energy photon? 3 ƒ60 ssfo f60ª f60 ssf ) ssf60°arrow_forward11. In the Balmer series, during which of the following energy state changes of the hydrogen atom is the photon with the most energy emitted? (A) n = 5 directly to n = 2 (B) n = 4 directly to n = 2 (C) n = 2 directly to n = 4 (D) n = 2 directly to n = 5 12. What is the minimum energy needed to ionize a hydrogen atom when it is in the n = 2 state? (A) 1.9 eV (B) 3.4 eV (C) 12.2 eV (D) 13.6 eVarrow_forward
- 14 A photon with a frequency of 5.02 x 10Hz is absorbed by an excited hydrogen atom which causes the electron to be ejected from the atom, forming an ion. Determine the energy of the photon, (Speed of light = 3.0 x 108 m/s, mass of proton = 1.0078250, mass of neutron = 1.008665U, 1U = 931.5- Planck's constant = 6.63 x 10-34 Js, mass of electron = 9.11 x 10-31 kg, Rydberg constant = 1.1 x 107 m. eV = 1.6 × 10-¹9 C). MeV Select one: O O a. 1.2 eV b. 2.1 eV c. 3.2 eV d. 4.1 eVarrow_forward1a. One photon of light emitted from a hydrogen lamp is measured to have an energy of 0.6618eV. What electron transition is responsible for this photon? Hint: one of the energy levels involved is n = 3. 1b. What is the emission spectrum for a given element and why do different elements have different emission spectra?arrow_forward2. Below are the energies of the first 6 energy levels in Lithium as well as the energies of 6 photons. How many of the photons can be created by an electron that transitions between the any two of the first 6 energy levels in Lithium? En (eV) n 1 2 3 4 5 6 -122.4 -30.6 -13.6 -7.65 -4.896 -3.4 Photon Energies (eV) 108.8 2.754 12.562 27.2 47.29 17.0arrow_forward
- 2. A photon is emitted from a hydrogen atom that undergoes an electronic transition from the state n=3 to the state n =2. Calculate (a) the energy, (b) the wavelength, and (c) the frequency of the emitted photon.arrow_forwardWhich of these expressions would yield the wavelength of light in meters emitted when an electron drops from orbit n = 3 to n = 2 in a Bohr hydrogen atom? Given h = 4.14 x 10-15 eVs and c = 3.00 x 108 m/s. a. 1.89/hxc b. hc/1.89 c. 1.89 x h x c d. (1.51 + 3.4)/hc e. hc/3.4arrow_forward7. When an electron transitions from the third excited state to the ground state in a hydrogen atom, the energy emitted in one photon is: A. 12.7 eV B. 10.5 eV C. 3.6 eV D. 0 eVarrow_forward
arrow_back_ios
arrow_forward_ios