
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
A 0.481 kg0.481 kg metal cylinder is placed inside the top of a plastic tube, the lower end of which is sealed off by an adjustable plunger. The cylinder comes to rest some distance above the plunger. The plastic tube has an inner radius of 5.54 mm5.54 mm and is frictionless. Neither the plunger nor the metal cylinder allow any air to flow around them.
If the plunger is suddenly pushed upwards, increasing the pressure between the plunger and the metal cylinder by a factor of 2.792.79, what is the initial acceleration ?a of the metal cylinder? Assume the pressure outside of the tube is 1.00 atm1.00 atm and that the top of the tube is open to the air.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 0.504 kg metal cylinder is placed inside the top of a plastic tube, the lower end of which is sealed off by an adjustable plunger. The cylinder comes to rest some distance above the plunger. The plastic tube has an inner radius of 5.71 mm and is frictionless. Neither the plunger nor the metal cylinder allow any air to flow around them. If the plunger is suddenly pushed upwards, increasing the pressure between the plunger and the metal cylinder by a factor of 2.79, what is the initial acceleration a of the metal cylinder? Assume the pressure outside of the tube is 1.00 atm and that the top of the tube is open to the air. a = m/s?arrow_forwardA 0.389 kg metal cylinder is placed inside the top of a plastic tube, the lower end of which is sealed off by an adjustable plunger. The cylinder comes to rest some distance above the plunger. The plastic tube has an inner radius of 6.73 mm and is frictionless. Neither the plunger nor the metal cylinder allow any air to flow around them. If the plunger is suddenly pushed upwards, increasing the pressure between the plunger and the metal cylinder by a factor of 2.31, what is the initial acceleration ? of the metal cylinder? Assume the pressure outside of the tube is 1.00 atmand that the top of the tube is open to the air.arrow_forwardSnorkelers breathe through short tubular "snorkels" while swimming under water very near the surface. One end of the snorkel attaches to the snorkeler's mouth while the other end protrudes above the water's surface. Unfortunately, snorkels cannot support breathing to any great depth: it is said that a typical snorkeler below a water depth of only about 30 cm cannot draw a breath through a snorkel. Part A Based on this claim, what is the approximate fractional change in a typical person's lung volume when drawing a breath? Assume, in equilibrium, the air pressure in a snorkeler's lungs matches that of the surrounding water pressure. Express your answer using two significant figures. AV % Vrelaxed Submit Request Answerarrow_forward
- Q17arrow_forwardA tank containing gas is separated into two compartments, labelled A and B, by a partition. A and B each carries volume of 15 m3 and 5 m3, respectively. Initially, the specific volume of gas in B is 5 m/kg. When the partition is removed, the resulting specific volume becomes 8 m3/kg. Find the original specific volume of gas in A.arrow_forwardA basketball is pressurized to a gauge pressure of PG = 55 kPa when at the surface of a swimming pool. (Patm = 101 kPa). The ball is then submerged in the pool of water which has a density ρ = 1000 kg/m3. Assume the ball does not change in mass, temperature, or volume as it is submerged. Calculate the absolute pressure inside the basketball in kPa when it is at the surface. Write an equation for the pressure difference ΔP between the inside and outside of the ball when it is submerged a distance y below the surface of the water. Solve the pressure equation for the depth (in meters) at which the pressure difference between the inside and outside of the ball will become zero. At this depth the pressure inside the basketball is the same as the pressure outside the ball.arrow_forward
- A chamber is filled with a gas that has a pressure of 0.250 atm and ???is connected to a mercury-filled u-tube with a width of 0.01m. The left side of the tube is closed and there is a vacuum at the top of the tube. How much higher is the mercury on the left-hand side compared to the right-hand side?arrow_forwardA sphygmomanometer is a device used to measure blood pressure, typically consisting of an inflatable cuff and a manometer used to measure air pressure in the cuff. In a mercury sphygmomanometer, blood pressure is related to the difference in heights between two columns of mercury. The mercury sphygmomanometer shown in the figure below contains air at the cuff pressure P. P Po h A U-shaped tube is open at the right end, and this end is labeled P.. The left end is connected to a spherical bulb labeled P. The tube is filled with mercury, and the height of the mercury in the right arm is higher than in the left arm. The difference between the two heights is labeled h. The difference in mercury heights between the left tube and the right tube is h = 114 mmHg = 0.114 m, a normal systolic reading. What is the gauge systolic blood pressure P. gauge in pascals? The density of mercury is p 13.6 x 103 kg/m3 and the ambient pressure is Po = 1.01 x 105 Pa. HINT Раarrow_forwardAn aquatic organism needs to be neutrally buoyant to stay at a constant depth. Fish accomplish this with an internal swim bladder they can fill with air that they take in from the water through their gills. One complication is that the pressure in the swim bladder matches that of the surrounding water, but the water pressure changes with depth. Because the volume of a gas is inversely proportional to pressure (as you may already know if you have studied the ideal-gas law), the volume of air in a fish's swim bladder decreases with depth unless the fish actively adds more air.arrow_forward
- A 0.458 kg metal cylinder is placed inside the top of a plastic tube, the lower end of which is sealed off by an adjustable plunger. The cylinder comes to rest some distance above the plunger. The plastic tube has an inner radius of 6.73 mm and is frictionless. Neither the plunger nor the metal cylinder allow any air to flow around them. If the plunger is suddenly pushed upwards, increasing the pressure between the plunger and the metal cylinder by a factor of 1.59, what is the initial acceleration a of the metal cylinder? Assume the pressure outside of the tube is 1.00 atm and that the top of the tube is open to the air.arrow_forwardA teenager in a large pool at a certain depth D, equipped with a full scuba gear, takes enough air from his tank to fully expand his lungs then swam up to the surface. During the ascent, the teenager failed to exhale which is not advisable. The difference between the external pressure and the acquired pressure in his lungs is 8.7 kPa. Determine the depth D. O 29 m 0.89 m O 9.5 m 8.7 marrow_forwardA 2.5-m-tall steel cylinder has a cross-sectional area of 1.5 m2. At the bottom, with a height of 0.5 m, is liquid water, on top of which is a 1-m high layer of gasoline, relative density of 0.8. The gasoline surface is exposed to atmospheric air at 101 kPa. What is the total mass of the liquid in the cylinder? 2000 kg O 1250 kg O 3250 kg O 1625 kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON