
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
At night many people see rings (called entoptic halos) surrounding
bright outdoor lamps in otherwise dark surroundings. The rings
are the first of the side maxima in diffraction patterns produced by
structures that are thought to be within the cornea (or possibly the
lens) of the observer’s eye. (The central maxima of such patterns
overlap the lamp.) (a) Would a particular ring become smaller or
larger if the lamp were switched from blue to red light? (b) If a lamp
emits white light, is blue or red on the outside edge of the ring?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The Rayleigh criterion provides a convenient way to describe the theoretical resolution (e.g. an ability to distinguish two bright objects ) of an optical system. The criterion states that two small bright sources of light can be resolved if the first diffraction minimum of the image of one source point just coincides with of further apart then the first maximum of another (see figure below). A converging lens, 22.8 mm in diameter, is used to form images of distant objects. Considering the diffraction by the lens, what angular separation must two distant point objects have in order to satisfy Rayleigh's criterion? Assume that the wavelength of the light from the distant objects is 640 nm. Provide your Page 1 answer in millidegrees (mdeg).arrow_forwardJackson is standing in air and is shining a flashlight at a 62-cm-thick slab of glass. His beam makes an angle of 83.5 degrees with the surface of the glass. The glass is a dispersive medium, and has an index of refraction of 2.1 for red light and 2.3 for purple light. Find the distance between the point where the red light leaves the slab and where the purple light leaves it. [The angles of refraction are small, so make the appropriate approximation when calculating their sines.]arrow_forwardThe Rayleigh criterion provides a convenient way to describe the theoretical resolution (e.g. an ability to distinguish two bright objects ) of an optical system. The criterion states that two small bright sources of light can be resolved if the first diffraction minimum of the image of one source point just coincides with of further apart then the first maximum of another (see figure below). A converging lens, 31.5 mm in diameter, is used to form images of distant objects. Considering the diffraction by the lens, what angular separation must two distant point objects have in order to satisfy Rayleigh's criterion? Assume that the wavelength of the light from the distant objects is 516 nm. Provide your answer in millidegrees (mdeg).arrow_forward
- Two light beams are incident normal to one surface of a triangular prism with refractive index n = 1.4 surrounded by air. What is the value of the angle between the two emerging beams, shown as a in the figure? d a 90° d 45° O 70.4° 73.7° O 61.8° 60.0° O 65.8° ..... ......arrow_forwardInformation is stored on an audio compact disc, CD-ROM, or DVD disc in a series of pits on the disc. These pits are scanned by a laser beam. An important limitation on the amount of information that can be stored on such a disc is the width of the laser beam. Explain why this should be, and explain how using a shorter-wavelength laser allows more information to be stored on a disc of the same size. With which color of light can the Hubble Space Telescope see finer detail in a distant astronomical object: red, blue, or ultraviolet? Explain your answer.arrow_forwardYou stand on a straight desert road at night and observe a vehicle approaching. This vehicle is equipped with two small headlights that are 0.635 m apart. At what distance, in kilometers, are you marginally able to discern that there are two headlights rather than a single light source? Take the wavelength of the light to be 537 nm and your pupil diameter to be 5.17 mm.arrow_forward
- Fiber optic cables, such as those used for high speed communication (Internet & phone services), transmit signals as light pulses through transparent cables. When viewed from one of the ends, you can see these light pulses, but when viewed from the side you can't. Why does this happen?arrow_forwardThe Rayleigh criterion provides a convenient way to describe the theoretical resolution (e.g. an ability to distinguish two bright objects ) of an optical system. The criterion states that two small bright sources of light can be resolved if the first diffraction minimum of the image of one source point just coincides with of further apart then the first maximum of another (see figure below). A converging lens, 34.2 mm in diameter, is used to form images of distant objects. Considering the diffraction by the lens, what angular separation must two distant point objects have in order to satisfy Rayleigh's criterion? Assume that the wavelength of the light from the distant objects is 431 nm. Provide your answer in millidegrees (mdeg). Answer: Choose... +arrow_forwardThe limit to the eye's acuity is actually related to diffraction by the pupil. What is the angle between two just-resolvable points of light for a 2.75 mm diameter pupil, assuming the average wavelength of 539 nm? angle between two points of light: Take the result to be the practical limit for the eye. What is the greatest possible distance a car can be from a person if he or she can resolve its two headlights, given they are 1.40 m apart? greatest distance at which headlights can be distinguished: m What is the distance between two just-resolvable points held at an arm's length (0.900 m) from a person's eye? distance between two points 0.900 m from a person's eye: marrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON