
Concept explainers
In the figure a 57 kg rock climber is in a lie-back climb along a fissure, with hands pulling on one side of the fissure and feet pressed against the opposite side. The fissure has width w = 0.15 m, and the center of mass of the climber is a horizontal distance d = 0.30 m from the fissure. The coefficient of static friction between hands and rock is μ1 = 0.35, and between boots and rock it is μ2 = 1.30. The climber adjusts the vertical distance h between hands and feet until the (identical) pull by the hands and push by the feet is the least that keeps him from slipping down the fissure. (He is on the verge of sliding.)
(a) What is the least horizontal pull by the hands and push by the feet that will keep the climber stable? (b) What is the value of h?


Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 5 images

- A 400 g block with an initial speed of 80 cm/s slides along a horizontal tabletop against a friction force of 0.70N. (a) How far will it slide before stopping? (b) What is the coefficient of friction between the block and the tabletop?arrow_forwardA person steps horizontally off the roof of a single-story house that is 3.1 m high. When his feet hit theground below, he bends his knees such that his torso decelerates over a distance of 0.65 m before coming to astop. If the mass of his torso is 50 kg, what is the average net force exerted on his torso over this distance?arrow_forwardThe Omani "Noor Majan" car is of mass (M) kg is going up Jabal Akhdar, at angle (θ), with (N) people inside the car each of (mp) kg. The car model provides (L) Newtons of lift, and it is accelerating up at (a) m/s2. The road provides a coefficienct of kinetic friction (μk). What is the force exerted by the engine? [Hint: This question has no numbers. Your answer needs to be an equation.]arrow_forward
- A small box with a weight of 35.0 N is placed on top of a larger box that has a weight of 80.0 N. The system of two boxes is at rest on a horizontal surface (the larger box is in contact with the surface). You apply an additional downward force of 30.0 N to the top of the small box by resting your hand on it. For this problem, use g = 10 N/kg. (a) What is the magnitude of the force exerted on the large box by the small box? (b) What is the magnitude of the force exerted on the large box by the surface? Now, imagine that the horizontal surface is the floor of an elevator, and the boxes are in the elevator, which has an acceleration directed downward of 1.00 m/s?. (c) What is the magnitude of the force exerted on the large box by the small box in this case? (d) What is the magnitude of the force exerted on the large box by the surface in this case? Narrow_forwardIn the very Dutch sport of Fierljeppen, athletes run up to a long pole and then use it to vault across a canal as shown in (Figure 1). At the very top of his arc, a 70 kg vaulter is moving at 2.9 m/s and is 5.5 m from the bottom end of the pole. What is the magnitude of the vertical force that the pole exerts on the vaulter? Express your answer with the appropriate units.arrow_forwardA 10 m long board that has a mass of 20 kg is held up by two vertical ropes. The left rope is 2 m from the left end of the board, and the other rope is 2 m from the right end of the board. A 40 kg box sits 2 m from the right end. Find the tension in the rope on the left.arrow_forward
- A person is pushing a wheelbarrow along a ramp that makes an angle a = 23.0° with the horizontal. The wheelbarrow and load have a combined mass of m = 28.85 kg with the center of mass at the midpoint of the length L. What is the Fx magnitude of the net force Fnet that the person must apply in order to push the wheelbarrow up the ramp at a constant velocity, while keeping the wheelbarrow in a level, horizontal orientation? Assume that the radius of the wheel is small enough to ignore. Use g = 9.81 m/s². total force: Narrow_forwardIt is known that the 10 kg pipe will roll up the ramp and not slide on the ramp when P becomes sufficiently large. Using the rolling assumption, find the minimum P required to cause impending motion of the 10 kg pipe up the ramp. Note that the coefficients of friction for the block/ramp, the pipe/ramp and the pipe/block contacts are each 0.30. 18 kg block 35° 10 kg pipe B μg 0.30 for all contactsarrow_forwardA box is given a push so that it slides across the floor. How far will it go, given that the coefficient of kinetic friction is 0.25 and the push imparts an initial speed of 3.9 m/sm/s ?arrow_forward
- In the figure, block M2 is sitting on a table and is connected by mass-less chords to block M1 and to a vertical wall. The coefficient of static friction between M2 and the table is Us=0.60. Block M1 has a mass of 8 kg. The angle made by the chord and the wall is 55 degrees. What minimum mass must block M2 have in order to remain stationary and not slide?arrow_forwardThe figure below shows a block weighing 22 N in contact with a vertical wall. Two forces are applied to the block, in addition to gravity, a horizontal force F of magnitude 60 N which pushes the block against a vertical wall and a force P of magnitude 62 N which pushes upward on the bottom of the block parallel to the wall. The coefficient of static friction between the wall and the block is 0.55 and the coefficient of kinetic friction between them is 0.38. Is the frictional force acting on the block static or kinetic, what is its magnitude and in what direction does it point? F Parrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





