
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:Compressed air can be pumped underground into huge caverns as a form of energy storage. The volume of a cavern is 6.3 x 105 m³,
5
and the pressure of the air in it is 7.4 × 106 Pa. Assume that air is a diatomic ideal gas whose internal energy U is given by U = nRT.
If one home uses 30.0 kWh of energy per day, how many homes could this internal energy serve for one day?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 4 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Three moles of an ideal monatomic gas are at a temperature of 381 K. Then 2959 J of heat is added to the gas, and 651 J of work is done on it. What is the final temperature of the gas? Number Units the tolerance is +/-2%arrow_forwardA sample of a monoatomic ideal gas has a pressure of p and volume V. When the gas is warmed, it’s pressure triples and volume triples. This warming process includes two steps, the first at constant pressure and the second at constant volume. Determine the amount of energy transferred to the gas by heat.arrow_forwardA sample of helium behaves as an ideal gas as it is heated at constant pressure from 273 K to 386 K. If 24.0 J of work is done by the gas during this process, what is the mass of helium present?arrow_forward
- A gas expands from I to F in the figure below. The energy added to the gas by heat is 212 J when the gas goes from I to F along the diagonal path. Three paths are plotted on a PV diagram, which has a horizontal axis labeled V (liters), and a vertical axis labeled P (atm). The green path starts at point I (2,4), extends vertically down to point B (2,1), then extends horizontally to point F (4,1). The blue path starts at point I (2,4), and extends down and to the right to end at point F (4,1). The orange path starts at point I (2,4), extends horizontally to the right to point A (4,4), then extends vertically down to end at point F (4,1). (a) What is the change in internal energy of the gas? Use the relations between various features of the graph and the work done on the gas to find the energy added by work and then use your result to find the change in internal energy of the gas. J(b) How much energy must be added to the gas by heat for the indirect path IAF to give the same change in…arrow_forwardAn ideal gas of 20 moles expands isothermally at temperature T= 90°C. The final volume is 5 times its initial volume. What is the heat flow into the gas in units of kJ? The universal gas constant R is 8.32 J/(mol·K).arrow_forwardEstilos Edición P5. A rigid container contains water vapor at 250°C and an unknown pressure. When the container cools to 150°C, the vapor begins to condense. Estimate the initial pressure in the container. Plot the thermodynamic process on a phase diagram. Answer: 600 kPa.arrow_forward
- One gram of water is vaporized into 1.65×103 cm3 when boiled at a constant pressure of 1.013×105Pa. If the heat of vaporization at this pressure is Lv=2.256×106J/kg, what is the work done by the water when it vaporizes?arrow_forwardA sealed cylinder has a piston and contains 8.90×103 cm3 of an ideal gas at a pressure of 7.50 atm. Heat is slowly introduced, and the gas isothermally expands to 1.70×104 cm3. How much work ? does the gas do on the piston?arrow_forward64870 J of heat is added to a gas at a constant pressure of 1.75 x 105 Pa This causes a change in internal energy of 2570 J. If the starting volume is .864 m3, what is the final volume?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON