Consider a rod of total length 4 m that is free to pivot above its center. The linear mass density of the rod is given by A(x) = 6 x4 (kg/m), where x is the distance from the center of the rod. The rod is in outer space, so you don't have to worry about any gravitational torques. There is a 168 N force that acts perpendicularly to the rod at its right end, and there is a 512 N force that acts halfway between the left end of the rod and its center. This force acts at an angle of 33 degrees to the vertical. This scenario is shown below: Calculate the angular acceleration of the rod, in rad/s?. The answer could be positive or negative.

Classical Dynamics of Particles and Systems
5th Edition
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Stephen T. Thornton, Jerry B. Marion
Chapter9: Dynamics Of A System Of Particles
Section: Chapter Questions
Problem 9.5P
icon
Related questions
icon
Concept explainers
Question
100%
Consider a rod of total length 4 m that is free to pivot above its center. The linear mass density of the
rod is given by (x) = 6 x4 (kg/m), where x is the distance from the center of the rod. The rod is in
outer space, so you don't have to worry about any gravitational torques. There is a 168 N force that
acts perpendicularly to the rod at its right end, and there is a 512 N force that acts halfway between
the left end of the rod and its center. This force acts at an angle of 33 degrees to the vertical. This
scenario is shown below:
Calculate the angular acceleration of the rod, in rad/s?. The answer could be positive or negative.
Transcribed Image Text:Consider a rod of total length 4 m that is free to pivot above its center. The linear mass density of the rod is given by (x) = 6 x4 (kg/m), where x is the distance from the center of the rod. The rod is in outer space, so you don't have to worry about any gravitational torques. There is a 168 N force that acts perpendicularly to the rod at its right end, and there is a 512 N force that acts halfway between the left end of the rod and its center. This force acts at an angle of 33 degrees to the vertical. This scenario is shown below: Calculate the angular acceleration of the rod, in rad/s?. The answer could be positive or negative.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Moment of inertia
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University