Consider an ice-producing plant that operates on the ideal vapor-compression refrigeration cycle and uses refrigerant-134a as the working fluid. The refrigeration cycle operating conditions require an evaporator pressure of 180 kPa and the condenser pressure of 1400 kPa. Cooling water flows through the water jacket surrounding the condenser and is supplied at the rate of 250 kg/s. The cooling water has a 10°C temperature rise as it flows through the water jacket. To produce ice, potable water is supplied to the chiller section of the refrigeration cycle. For each kg of ice produced, 333 kJ of energy must be removed from the potable water supply.   (Take the required values from saturated refrigerant-134a tables.)   Determine the mass flow rate of the potable water supply, in kg/s.   The mass flow rate of the potable water supply is_______ kg/s.

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter28: Special Refrigeration Applications
Section: Chapter Questions
Problem 15RQ: Why is two-stage compression popular for extra-low-temperature refrigeration systems?
icon
Related questions
Question

 

Consider an ice-producing plant that operates on the ideal vapor-compression refrigeration cycle and uses refrigerant-134a as the working fluid. The refrigeration cycle operating conditions require an evaporator pressure of 180 kPa and the condenser pressure of 1400 kPa. Cooling water flows through the water jacket surrounding the condenser and is supplied at the rate of 250 kg/s. The cooling water has a 10°C temperature rise as it flows through the water jacket. To produce ice, potable water is supplied to the chiller section of the refrigeration cycle. For each kg of ice produced, 333 kJ of energy must be removed from the potable water supply.

 

(Take the required values from saturated refrigerant-134a tables.)

 

Determine the mass flow rate of the potable water supply, in kg/s.

 

The mass flow rate of the potable water supply is_______ kg/s.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 8 steps with 6 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning