
Chemistry
10th Edition
ISBN: 9781305957404
Author: Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Consider the synthesis of NF3 (g) from N2(g) and F2 (g). When 3.98 ATM of F2 and 4.9 ATM of N2 are combined in a sealed reaction flask at hundred degrees Celsius and allowed to reach equilibrium, the total pressure in the flask decreases to 6.429 ATM determine the equilibrium constant
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 5 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Write equilibrium expressions for: N₂(g) + 3H₂(g) 2NH₂(g) 3 the reaction as written • the reverse reaction the reaction as written with all coefficients in the equation halvedarrow_forwardAt 30 degrees Celsius the Kc for 2CO(g) + O2(g) = 2CO2(g) is 2.24 x 1022. Predict in which direction the reaction will proceed to reach equilibrium, if we start with 55.0 g CO, 95.0 g O2 and 75.0 g CO2 in a 5.0 L vessel.arrow_forwardSuppose a 250. mL flask is filled with 0.40 mol of H₂ and 1.3 mol of HI. This reaction becomes possible: H₂(g) +1₂(g) → 2HI(g) Complete the table below, so that it lists the initial molarity of each compound, the change in molarity of each compound due to the reaction, and the equilibrium molarity of each compound after the reaction has come to equilibrium. Use x to stand for the unknown change in the molarity of H₂. You can leave out the M symbol for molarity. initial cha equilibrium H₂ 0 X 0 1₂ 0 HI 00 믐 X olo 18 Ararrow_forward
- "Synthesis gas" is a mixture of carbon monoxide and water vapor. At high temperature synthesis gas will form carbon dioxide and hydrogen, and in fact this reaction is one of the ways hydrogen is made industrially. A chemical engineer studying this reaction fills a 500. mL flask with 0.82 atm of carbon monoxide gas and 0.85 atm of water vapor. When the mixture has come to equilibrium she determines that it contains 0.33 atm of carbon monoxide gas, 0.36 atm of water vapor and 0.49 atm of hydrogen gas. The engineer then adds another 0.41 atm of carbon monoxide, and allows the mixture to come to equilibrium again. Calculate the pressure of carbon dioxide after equilibrium is reached the second time. Round your answer to 2 significant digits. atmarrow_forwardNitrogen dioxide is one of the many oxides of nitrogen (often collectively called "NOx") that are of interest to atmospheric chemistry. It can react with itself to form another form of NOx, dinitrogen tetroxide. A chemical engineer studying this reaction fills a 125 L tank with 47. mol of nitrogen dioxide gas. When the mixture has come to equilibrium he determines that it contains 22. mol of nitrogen dioxide gas. The engineer then adds another 16. mol of nitrogen dioxide, and allows the mixture to come to equilibrium again. Calculate the moles of dinitrogen tetroxide after equilibrium is reached the second time. Round your answer to 2 significant digits. ||mol x10arrow_forwardWhich of the following statements is a true statement concerning a reaction that has reached a state of equilibrium? A system has reached equilibrium when the concentrations of reactants and products remain constant. A system has reached equilibrium when the reaction has stopped and no more products are formed. A system has reached equilibrium when the rate constant for the forward reaction equals the rate constant of the reverse reaction. A system has reached equilibrium when the concentrations of reactants and products correspond to the stoichiometric ratios determined by the balanced equation.arrow_forward
- Suppose a 250. mL flask is filled with 1.7 mol of NO2, 0.80 mol of CO and 0.70 mol of CO2. The following reaction becomes possible: NO2(g) + CO(g) = NO(g) + CO2(g) The equilibrium constant K for this reaction is 2.90 at the temperature of the flask. Calculate the equilibrium molarity of NO. Round your answer to two decimal places.arrow_forwardA 1.00-L flask was filled with 2.14 mol gaseous SO2 and 2.14 mol gaseous NO2 and heated. After equilibrium was reached, it was found that 1.55 mol gaseous NO was present. Assume that the reaction SO2 (g) + NO, (g) = SO3(g) + NO(g) occurs under these conditions. Calculate the value of the equilibrium constant, K, for this reaction. HOW DO WE GET THERE? What are the equilibrium concentrations of SO2, NO2, and SO3? [SO2] = [NO2] = M [SO3] = Marrow_forward"Synthesis gas" is a mixture of carbon monoxide and water vapor. At high temperature synthesis gas will form carbon dioxide and hydrogen, and in fact this reaction is one of the ways hydrogen is made industrially. A chemical engineer studying this reaction fills a 200. mL flask with 2.3 atm of carbon monoxide gas and 4.0 atm of water vapor. When the mixture has come to equilibrium he determines that it contains 0.90 atm of carbon monoxide gas, 2.6 atm of water vapor and 1.4 atm of carbon dioxide. The engineer then adds another 1.0 atm of water, and allows the mixture to come to equilibrium again. Calculate the pressure of hydrogen after equilibrium is reached the second time. Round your answer to 2 significant digits. 0 atm x10 Xarrow_forward
- Ammonia will decompose into nitrogen and hydrogen at high temperature. An industrial chemist studying this reaction fills a 200. mL flask with 4.6 atm of ammonia gas, and when the mixture has come to equilibrium measures the partial pressure of hydrogen gas to be 4.8 atm. Calculate the pressure equilibrium constant for the decomposition of ammonia at the final temperature of the mixture. Round your answer to 2 significant digits.arrow_forwardConsider the following reaction. 2 NO₂(g) = N₂O4(g) 4 When the system is at equilibrium, it contains NO₂ at a pressure of 0.860 atm, and N₂O at a pressure of 0.0740 atm. The volume of the container is then reduced to half its original volume. What is the pressure of each gas after equilibrium is reestablished? atm PNO₂ = atm PN₂0₁ =arrow_forwardHydrogen chloride and oxygen react to form chlorine and water, like this: 4 HCl(g) + O₂(g) →2Cl₂(g) + 2 H₂O(g) Write the pressure equilibrium constant expression for this reaction. X Śarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY