# Determine whether the following series converges. Justify your answer 9(4k)! Σ k=1 (kl)* Select the correct choice below and fill in the answer box to complete your choice. (Type an exact answer.) O A. The series is a qeometric series with common ratio less than 1, so the series converges by the properties of a geometric series. This O B. The Ratio Test yields r This is less than 1, so the series converges by the Ratio Test. O C. The series is a geometric series with common ratio This greater than 1, so the series diverges by the properties of a geometric series. O D. The Ratio Test vields r=.This is greater than 1,so the series diverges by the Ratio Test O E. The limit of the terms of the series is so the series converges by the Divergence Test. 8

Question help_outlineImage TranscriptioncloseDetermine whether the following series converges. Justify your answer 9(4k)! Σ k=1 (kl)* Select the correct choice below and fill in the answer box to complete your choice. (Type an exact answer.) O A. The series is a qeometric series with common ratio less than 1, so the series converges by the properties of a geometric series. This O B. The Ratio Test yields r This is less than 1, so the series converges by the Ratio Test. O C. The series is a geometric series with common ratio This greater than 1, so the series diverges by the properties of a geometric series. O D. The Ratio Test vields r=.This is greater than 1,so the series diverges by the Ratio Test O E. The limit of the terms of the series is so the series converges by the Divergence Test. 8 fullscreen

## Expert Answer

### Want to see this answer and more?

Experts are waiting 24/7 to provide step-by-step solutions in as fast as 30 minutes!*

*Response times vary by subject and question complexity. Median response time is 34 minutes and may be longer for new subjects.
Tagged in
MathCalculus

### Other © 2021 bartleby. All Rights Reserved.