Question

For each expression below, use the product-to-sum formulas and algebraic simplification to write an equivalent expression in the form given.

Rewrite cos^2(x)sin^4(x) in the form a+(b*cos(2x))+(c*cos(4x))+(d*cos(2x)*cos(4x))

a= , b= , c= , d=

Expert Solution

Want to see the full answer?

Check out a sample Q&A here
Blurred answer
Students who’ve seen this question also like:
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN: 9781133382119
Author: Swokowski
Publisher: Cengage
Not helpful? See similar books
Algebra & Trigonometry with Analytic Geometry
marketing sidebar icon
Want to see this answer and more?
Experts are waiting 24/7 to provide step-by-step solutions in as fast as 30 minutes!*
*Response times may vary by subject and question complexity. Median response time is 34 minutes for paid subscribers and may be longer for promotional offers.

Related Trigonometry Q&A

Find answers to questions asked by students like you.

Q: Evaluate tan (8z)sec2 (8z)da

A: Click to see the answer

Q: Prove the identity. sin x + sin 3x = tan 2x cos x + cos 3x Use the Sum-to-Product Formulas and then…

A: Click to see the answer

Q: Express the sum cos 3x/2 + cos x/2 as a product. If possible, find this product’s exact value.

A: Express the sum cos 3x/2 + cos x/2 as a product. If possible, find this product’s exact value.

Q: Express the sum sin 2x - sin 4x or difference as a product.If possible, find this product’s exact…

A: Let, the given expression be y - y = sin2x-sin4xUsing trigonometric identity - sinC-sinD =…

Q: Prove the identity. sin x + sin 3x cos x + cos 3x = tan 2x Use the Sum-to-Product Formulas and then…

A: Given : sinx + sin 3xcosx + cos3x = tan2x

Q: Express the sum sin 9x + sin 5x as a product.

A: sin 9x + sin 5x We need to express the given sum as a product.

Q: -sin 0+2sin0+3=4

A: Click to see the answer

Q: Evaluate ∫tan4 x sec4 x dx.

A: Using the Pythagorean identity we get:

Q: Verify the identity tanh2 x + sech2 x = 1

A: Click to see the answer

Q: Prove sin xdx = -1 -1 2

A: Click to see the answer

Q: Express the sum sin 3x/2 + sin x/2 as a product. If possible, find this product’s exact value.

A: To express the sum sin 3x2 + sin x2 as a product.       Formula :  sin α + sin β = 2 sinα + β2 cos…

Q: Solve for all X: 4 sin 3x-Sin X = 0 %3D

A: Click to see the answer

Q: Express the sum sin 8x + sin 2x as a product. If possible, find this product’s exact value.

A: To express the sum sin 8x + sin 2x as a product, apply the trigonometric formula…

Q: Evaluate sin" (2xv1-x) - X

A: Click to see the answer

Q: Express the sum sin 6x + sin 2x as a product. If possible, find this product’s exact value.

A: Given,           sin 6x + sin 2xWe know that,         sin x + sin y = 2 sin x + y2 cos x - y2

Q: Express the sum sin 7x + sin 3x as a product.

A: Rewrite the given trigonometric expression as sum and difference of 5x and 2x.

Q: Prove the identity csc(-x)-sin(-x)=-cosxcotx Explain each step

A: We have to prove csc-x-sin-x=-cosx cotx. We know that sinx and cosecx are odd function. Therefore,…

Q: Solve (tan(x)−1)(3tan(x)+√3) = 0 over [0,2π)

A: Click to see the answer

Q: (7cosx-sinx)2 + (cosx+7sinx)2 = 50 Verify the identity.

A: Given,

Q: Verify the identity. (Simplify at each step.) 6 cos (T/2) – x 6 tan x sin (1/2) – x 6 cos (u/2) – x…

A: Click to see the answer

Q: Verify the identity. (Simplify at each step.) sin5/2 x cos x – sin9/2 x cos x = cos³ x/ sin5 x…

A: sin2X+cos2X=1 this is formula cos2X=1-sin2X

Q: Solve for x if cos(x+42°)=sin2x and x€[-180°,180°]

A: Click to see the answer

Q: Q3) Use the addition formulas to derive the identity of (cos (x - -) = sin x) %3D

A: Formula cos(A-B) =cos(A) cos(B) +sin(A) sin(B)

Q: Q3) Use the addition formulas to derive the identity of (cos (x --): sin x ) %3D

A: Click to see the answer

Q: verify that -2cotx(csc^2x)= -csc^4x(sin(2x))

A: The proof is given in step-2.

Q: Verify the identity. (Simplify at each step.) sin3/2 x cos x - sin72 x cos x = cos xV sin3 x (Vsint…

A: The trigonometric equation is sin32x cos x -sin72x cos x.

Q: Verify the identity. (Simplify at each step.) sin1/2 x cos x - sin5/2 x cos x = cos³ x/ sin x sin /2…

A: Click to see the answer

Q: Prove the identity. sin x + sin 3x cos x + cos 3x tan 2x Use the Sum-to-Product Formulas and then…

A: Click to see the answer

Q: Verify the identity. (Simplify at each step.) tan9 x = tan7 x sec2 x − tan7 x   tan9 x = (tan7…

A: Click to see the answer

Q: simplify a. sin^2(3x)+cos^2(3x) b. cos^2(3x)-sin^2(3x)

A: Click to see the answer

Q: Express as a product.sin 3t - sin 7t

A: Given : sin 3t - sin 7t

Q: Verify the identity. (Simplify at each step.) 8 cos (w/2) - x] sin (ca/2) – x] 8 cos (1/2) – x sin…

A: Explanation of the answer is as follows

Q: Evaluate: ( cos$ 2xdx sin 2x

A: Click to see the answer

Q: Rewrite sin(x+π/6) in terms of sinx and cosx Enclose arguments of functions in parentheses. For…

A: Click to see the answer

Q: find cos x if cos 2x=1/9

A: Consider the equation

Q: If cos(x) = - and sin(y) = - with tan(x) > 0 and cos(y) < 0, algebraically compute the exact value…

A: Click to see the answer

Q: sin(cos-(0.7068)) O - 1.2926 O 0.7074 2.7074 -0.2926 1.7074

A: Click to see the answer

Q: Prove the identity. sec (-x) - sin (-x) tan(-x) = cosx

A: Given,          sec-x-sin-xtan-x=cosx

Q: Prove the identity. sec(-x)-sin(-x)tan(-x)=cosx

A: sec(-x)-sin(-x)tan(-x)=sec(x)-(-sin(x))(-tan(x))=sec(x)-sin(x)tan(x)

Q: By using the addition formula derive the identity of the function sin (x -), then choose the (E-)…

A: We have to use sin sum formula.

Q: Express the product sin 8x sin 3x as a sum or difference.

A: Given:sin8x sin3xFormula:sinA sinB=12 cosA-B-cosA+B

Knowledge Booster
Trigonometry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
  • Algebra & Trigonometry with Analytic Geometry
    Algebra
    ISBN:9781133382119
    Author:Swokowski
    Publisher:Cengage
  • Algebra & Trigonometry with Analytic Geometry
    Algebra
    ISBN:9781133382119
    Author:Swokowski
    Publisher:Cengage