College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Future space stations will create an artificial gravity by rotating. Consider a cylindrical space station 311 m diameter rotating about its central axis. Astronauts walk on the inside surface of the space station. What rotation period will provide "normal" gravity? (Give answer to the nearest 0.1 second)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For a satellite (mass 5,477 kg) to be in a circular orbit 932 km above the surface of the Earth, what is its radial acceleration? The mass of the Earth is 5.97 x 1024 kg, and its' average radius is 6.38 x 106 m. 1 km = 1000 m Your Answer: units Answerarrow_forwardIt is proposed that future space stations create an artificial gravity by rotating. Suppose a space station in constructed as a 1010.0 m diameter cylinder that rotates about its axis. The inside surface is the deck of the space station. What rotation period (in s) will provide "normal" gravitational acceleration of 9.80 m/s2 at deck level?arrow_forwardPlease asap for like Please asaparrow_forward
- A space exploration program proposes to make artificial gravity on a space station that looks like a circular ring with a 500 m diameter by having the space station rotate. At what angular frequency would the space station have to rotate so that someone standing on a scale in the outer ring of the space station would have an apparent weight the same as they would on Earth?arrow_forward283.1 G12 Physicsarrow_forwardCalculate the angular velocity (in rad/s) of Mercury about its axis of rotation. (Enter the magnitude.) answer in rad/sarrow_forward
- A car traveling 20 m/s just leaves the road at the top of a hump. The radius of curvature of the hump isarrow_forwarda) What is the period of rotation of Venus in seconds? (The period of rotation of Venus in hours is 5,832.5 hr.) Answer in seconds (b)What is the angular velocity (in rad/s) of Venus? (Enter the magnitude.) Answer in rad/s (c) Given that Venus has a radius of 6.1 ✕ 106 m at its equator, what is the linear velocity (in m/s) at Venus's surface? (Enter the magnitude of the linear velocity at the equator.) Answer on m/sarrow_forwardArtificial gravity is a must for any space station if humans are to live there for any extended length of time. Without artificial gravity, human growth is stunted and biological functions break down. An effective way to create artificial gravity is through the use of a rotating enclosed cylinder, as shown in the figure. Humans walk on the inside of the outer edge of the cylinder, which has a diameter of ?=2735 m that is large enough such that its curvature is not readily noticeable to the inhabitants. (The space station in the figure is not drawn to scale.) Once the space station is rotating at the necessary angular speed ? to create an artificial gravity of 1 g, how many minutes would it take the space station to make one revolution?arrow_forward
- Problem 05.090 - Moving a satellite around Earth-DEPENDENT MULTI-PART PROBLEM - ASSIGN ALL PARTS A satellite travels around Earth in uniform circular motion at an altitude of 35,799 km above Earth's surface. The satellite is in geosynchronous orbit. In the below figure, the satellite moves counterclockwise (ABCDA). (State directions in terms of the x- and y-axes.) The radius of Earth is 6371 km. B CO Earth D A Problem 05.090.b-1- Magnitude of the satellite's average velocity What is the magnitude of the satellite's average velocity for one quarter of an orbit, starting at A and ending at B?arrow_forwardThe International Space Station has a mass of 440,725 kg and is located 420 km away from the surface of the earth. Earth has a mass of 5.97 x 1024 kg and a radius of 6371 km. How quickly does the ISS travel as it orbits the earth, assuming uniform circular motion? Express your answers in rev/day (for angular velocity) and mph (for tangential velocity). Define ALL variables.arrow_forwardI need some help solving this problem: The angular speed of a point on a planet is 5π/11 radian per hour. The equator lies on a circle of radius approximately 6000 miles. Find the linear velocity, in miles per hour, of a point on the equator. Round to the nearest whole number as needed. Thanks so much for your help!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON