If you did the previous question right, you hopefully got an expression for yo. You may notice that you can simplify the differential equation a little bit: d'y k -(y – yo) dt2 т The parameter Yo now plays the roll of the "relaxed length". A better term may be "equilibrium value for y". But mathematically, it's identical to a relaxed length with the spring as the only force. We continue using this equation: y(t) = yo + A cos(wt + 4) Now, solve for A (in cm) with these parameters. Again, if you need more information, enter -100000. The parameters are: •m = 200 grams • Yo = (equilibrium value) = 40 cm • k = (spring constant) = 0.03 N/cm %3D

Classical Dynamics of Particles and Systems
5th Edition
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Stephen T. Thornton, Jerry B. Marion
Chapter3: Oscillations
Section: Chapter Questions
Problem 3.12P
icon
Related questions
Question
If you did the previous question right, you hopefully got an expression for yo. You may notice that
you can simplify the differential equation a little bit:
d'y
k
(y – yo)
dt2
т
The parameter yo now plays the roll of the "relaxed length". A better term may be "equilibrium value
for y". But mathematically, it's identical to a relaxed length with the spring as the only force. We
continue using this equation:
y(t) = Y0 + A cos(wt + y)
Now, solve for A (in cm) with these parameters. Again, if you need more information, enter
-100000. The parameters are:
•m = 200 grams
• Yo = (equilibrium value) = 40 cm
• k = (spring constant) = 0.03 N/cm
Transcribed Image Text:If you did the previous question right, you hopefully got an expression for yo. You may notice that you can simplify the differential equation a little bit: d'y k (y – yo) dt2 т The parameter yo now plays the roll of the "relaxed length". A better term may be "equilibrium value for y". But mathematically, it's identical to a relaxed length with the spring as the only force. We continue using this equation: y(t) = Y0 + A cos(wt + y) Now, solve for A (in cm) with these parameters. Again, if you need more information, enter -100000. The parameters are: •m = 200 grams • Yo = (equilibrium value) = 40 cm • k = (spring constant) = 0.03 N/cm
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 8 images

Blurred answer
Knowledge Booster
Normal Modes
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill