
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:In the figure, a 0.400 kg ball is shot directly upward at initial speed 43.3 m/s. What is its angular momentum about P, 1.63 m
horizontally from the launch point, when the ball is (a) at maximum height and (b) halfway back to the ground? What is the torque
on the ball about P due to the gravitational force when the ball is (c) at maximum height and (d) halfway back to the ground?
-Ball
P.
(a) Number
Units
(b) Number
Units
(c) Number
Units
(d) Number
Units
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 4 images

Knowledge Booster
Similar questions
- A 150-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope about the rim of the disk and pulling on the rope. (a) What constant force must be exerted on the rope to bring the merry-go-round from rest to an angular speed of 0.500 rev/s in 2.00 s? (b) What is the angular momentum of the disk during this time?arrow_forwardA 95.5 kg horizontal circular platform rotates freely with no friction about its center at an initial angular velocity of 1.75 rad/s. A monkey drops a 8.65 kg bunch of bananas vertically onto the platform. They hit the platform at of its radius from the center, adhere to it there, and continue to rotate with it. Then the monkey, with a mass of 22.1 kg, drops vertically to the edge of the platform, grasps it, and continues to rotate with the platform. Find the angular velocity of the platform with its load. Model the platform as a disk of radius 1.79 m. angular velocity: rad/s about us careers privacy policy terms of use contact us helparrow_forwardThe Earth has an angular speed of 7.272 10-5 rad/s in its rotation. Find the new angular speed if an asteroid (m = 1.22 1022 kg) hits the Earth while traveling at a speed of 1.45 103 m/s (assume the asteroid is a point mass compared to the radius of the Earth) in each of the following cases. (a) The asteroid hits the Earth dead center along the radial line from the Sun through the Earth's center. (b) The asteroid hits the Earth nearly tangentially in the direction of Earth's rotation. (c) The asteroid hits the Earth nearly tangentially in the direction opposite to Earth's rotation.arrow_forward
- A 7 kg point mass is at coordinates (5 m, 5 m), a 4 kg mass is at (-5,7) and a 5kg mass is at (x,y) of (4,-7). Find the moment of inertia about the x axis. Find Iz = __________ kg-m2arrow_forwardA car initially traveling at 27.2 m/s undergoes a constant negative acceleration of magnitude 1.80 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.335 m? ?rev(b) What is the angular speed of the wheels when the car has traveled half the total distance?? rad/sarrow_forwardIn the figure, a 0.400 kg ball is shot directly upward at initial speed 51.9 m/s. What is the magnitude of its angular momentum about P, 6.03 m horizontally from the launch point, when the ball is (a) at maximum height and (b) halfway back to the ground? What is the magnitude of the torque on the ball about P due to the gravitational force when the ball is (c) at maximum height and (d) halfway back to the ground? Ball (a) Number Units (b) Number Units (c) Number Units (d) Number Unitsarrow_forward
- A space craft may be modeled as a uniform disk. Suppose the disk shaped craft has a mass of 2500 kg and a radius of 5.67 ngedalla par pplica meters. (a) What is the moment of inertia of the spacecraft? (b) Two rocket engines on opposite sides of the craft each apply an identical tangential force to impart a uniform angular acceleration in the counterclockwise sense. Suppose the craft acceleration from rest to an angular velocity of 1.00 revolutions per second in the counter clockwise sense over a period of 30.0 seconds. What is this final angular velocity in radians per second? (c) What is the angular acceleration of the craft over the period of uniform angular ac- celeration? (d) What net torque is needed to achieve the angular acceleration in part (c)? (e) What force is applied by each rocket engine during the period of uniform angular accel- eration?arrow_forwardCan someone explain this?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON