# Inductive charging is used to wirelessly charge electronic devices ranging from toothbrushes to cell phones. Suppose the base unit of an inductive charger produces a 1.50 ✕ 10−3 T magnetic field. Varying this magnetic field magnitude changes the flux through a 17.0-turn circular loop in the device, creating an emf that charges its battery. Suppose the loop area is 3.75 ✕ 10−4 m2 and the induced emf has an average magnitude of 5.50 V. Calculate the time required (in s) for the magnetic field to decrease to zero from its maximum value.

Question
6 views

Inductive charging is used to wirelessly charge electronic devices ranging from toothbrushes to cell phones. Suppose the base unit of an inductive charger produces a 1.50 ✕ 10−3 T magnetic field. Varying this magnetic field magnitude changes the flux through a 17.0-turn circular loop in the device, creating an emf that charges its battery. Suppose the loop area is 3.75 ✕ 10−4 m2 and the induced emf has an average magnitude of 5.50 V. Calculate the time required (in s) for the magnetic field to decrease to zero from its maximum value.

check_circle

star
star
star
star
star
1 Rating
Step 1

### Want to see the full answer?

See Solution

#### Want to see this answer and more?

Solutions are written by subject experts who are available 24/7. Questions are typically answered within 1 hour.*

See Solution
*Response times may vary by subject and question.
Tagged in