# Kiting during a storm. The legend that Benjamin Franklin flew a kite as a storm approached is only a legend — he was neither stupid nor suicidal. Suppose a kite string of radius 2.10 mm extends directly upward by 0.802 km and is coated with a 0.520 mm layer of water having resistivity 155 Ω·m. If the potential difference between the two ends of the string is 176 MV, what is the current through the water layer? The danger is not this current but the chance that the string draws a lightning strike, which can have a current as large as 500 000 A (way beyond just being lethal).

Question
31 views

Kiting during a storm. The legend that Benjamin Franklin flew a kite as a storm approached is only a legend — he was neither stupid nor suicidal. Suppose a kite string of radius 2.10 mm extends directly upward by 0.802 km and is coated with a 0.520 mm layer of water having resistivity 155 Ω·m. If the potential difference between the two ends of the string is 176 MV, what is the current through the water layer? The danger is not this current but the chance that the string draws a lightning strike, which can have a current as large as 500 000 A (way beyond just being lethal).

check_circle

Step 1

Consider the radius of the string be r, the length of the string be l, the resistivity of the water be ρ, the thickness of the water layer be d, the current through the water layer be I, the resistance of the wire be R, and the potential difference be V.

The given values are,

Step 2

The radius of the string along with water layer can be calculated as,

Step 3

The area of the cross section of the...

### Want to see the full answer?

See Solution

#### Want to see this answer and more?

Solutions are written by subject experts who are available 24/7. Questions are typically answered within 1 hour.*

See Solution
*Response times may vary by subject and question.
Tagged in