
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Figure shows the charge distribution in a water molecule, which is called a polar molecule because it has an inherent separation of charge. Given water’s polar character, explain what effect humidity has on removing excess charge from objects.

Transcribed Image Text:н
•+q
-2g
104°
Figure 18.43 Schematic representation of the outer electron cloud of a neutral water molecule. The electrons spend more time near the oxygen than
the hydrogens, giving a permanent charge separation as shown. Water is thus a polar molecule. It is more easily affected by electrostatic forces than
molecules with uniform charge distributions.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A +0.17 micro-Coulomb charge produces an electric field that radiates radially outward from it. What is the magnitude of the electric field at a distance of 11.65m from this source charge? Note: It is understood that the unit of your answer is in Newtons/Coulomb (N/C), however do not explicitly include units in your answer. Enter only a number. If you do enter a unit, your answer will be counted wrong.arrow_forward1. a nonconducting rod of length L has charge -q uniformly distributed along its length. (a) What is the linear charge density of the rod? (b) What is the electric field at point P, a distance a from the end of the rod? (c) If P were very far from the rod compared to L, the rod would look like a point charge. Show that your answer to (b) reduces to the electric field of a point charge for a >> L.arrow_forwardI have a piece of PVC that keeps attracting particles to it like dust, hair, etc. (seemingly to be statically charged to the PVC). Please explain the process of why it is happening and provide sources for the information used to answer the question.arrow_forward
- Two charged balls are hanging by threads as shown below: 5.0⁰ Each ball has a mass of 3.90 grams and a charge Q nC, and the length of each thread is 58.6 cm. For what value of Q will the masses be held in place? Assume units of nC = 10-⁹℃ for the charge and assume 3 significant digits.arrow_forwarda. An electrically neutral penny, of mass 3.11 g, contains equal number of positive and negative charges. Assuming the penny is made of pure copper, what is the total positive (or negative) charge within a penny? Atomic mass of copper = 63.5 g/mol Na = 6.02 x 10 atoms / mol (Avogadro's number) CAADA Atomic Number of Copper = 29 protons/atom NOTE: you don't necessarily need chemistry for this.Dimensional analysis!!! b. Suppose the positive and negative charges could be isolated into two bundles and separated by a distance of 1.00 km. What would the force of attraction between the bundles be?arrow_forwardTwo very large, nonconducting plastic sheets, each 10.0 cm thick, carry uniform charge densities 01, 02, 03 and 04 on their surfaces, as shown in the following figure.These surface charge densities have the values o1 = -5.30 µC/m2, o2-5.00µC/m2, o3 = 2.90 µC/m2, and 04-4.00μC/m2. Use Gauss's law to find the magnitude and direction of the electric field at the following points, far from the edges of these sheets. Part A: What is the magnitude of the electric field at point A, 5.00 cm from the left face of the left-hand sheet? Express your answer to three significant figures and include the appropriate units.arrow_forward
- In 1909, Robert Millikan and Harvey Fletcher designed an experiment to measure the electric charge of oil droplets by dropping them through an electric field, increasing the electric field strength until the droplets were suspended in the air. By repeating the experiment for many droplets, they confirmed that the charges were all small integer multiples of a certain base value, and thus they measured the charge of a single electron. In Millikan's experiment in the figure below, an oil droplet of mass 3.18 fg has an excess charge of five electrons. An electric field has been applied, and the droplet is levitating. What is the magnitude of the electric field? (Units: N/C) Note: 1??=10−15?=10−18??arrow_forwardTwo very large, nonconducting plastic sheets, each 10.0 cm thick, carry uniform charge densities 01, 02, 03 and 04 on their surfaces, as shown in the following figure (Figure 1). These surface charge densities have the values 01 = -5.50 μC/m², 02 = 5.00 μC/m², 03 = 1.00 μC/m², and 4 = 4.00 μC/m². Use Gauss's law to find the magnitude and direction of the electric field at the following points, far from the edges of these sheets. Part A What is the magnitude of the electric field at point A, 5.00 cm from the left face of the left-hand sheet? Express your answer with the appropriate units. E = O μA Value Units ?arrow_forwardA water molecule with any spatial orientation is placed nearby a spherical distribution of charges Q. Describe the dynamic behavior (rotation and translation) of the water molecule.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON