Question
Nitrogen molecules are made of two nitrogen atoms with atomic weight of 14 each. Water molecules are made of one oxygen of 16 atomic mass units and two hydrogens of 1 atomic mass unit each. If you have one gram of each substance in vapor form, at high enough temperature that all molecular vibration and rotation modes are accessible, and the two substances are at the same temperature, what is the ratio of the total energy content of the nitrogen to that of the water?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps with 4 images

Knowledge Booster
Similar questions
- a) Calculate the mean free path in meters of a nitrogen molecule (with a mass m=4.68×10¬26 kg) located in Earth's atmosphere at sea level. Assume a temperature of T=300 K and a number density of particles of 1019 cm-3. b) Assuming that the collision cross-section of the molecule is o = 2x10-10 frequency v in Hertz and the time between collisions t in seconds. m, compute the collisionarrow_forwardThe pressure unit 1 torr is comparable to 0.001 bar. In a sample of N₂ at this pressure and a temperature of 300 K, what is the mean free path between collisions in mm (millimeters)? Assume that the cross-section for N₂ molecules is o = 4.50 × 10-19 m².arrow_forwardThe next four questions use this description. Our Sun has a peak emission wavelength of about 500 nm and a radius of about 700,000 km. Your dark-adapted eye has a pupil diameter of about 7 mm and can detect light intensity down to about 1.5 x 10-11 W/m2. Assume the emissivity of the Sun is equal to 1. First, given these numbers, what is the surface temperature of the Sun in Kelvin to 3 significant digits? What is the power output of the Sun in moles of watts? (in other words, take the number of watts and divide it by Avogadro's number) Assuming that all of the Sun's power is given off as 500 nm photons*, how many photons are given off by the Sun every second? Report your answer to the nearest power of 10 (e.g. if you got 7 x 1024, give your answer as 25).arrow_forward
- The image shows the example of finding the number of vacancies in 1 cubic meter of copper (Cu) at 1000 degrees celcius (1273 k) considering the image data. Replicating the problem in the image, calculate the number of vacancies but at room temperature.Explain why there is such a difference in the number of vacancies at both temperatures.arrow_forwardWhat is the average thermal velocity of a hydrogen molecule H at 27 \deg C? (Assume: Boltzmann constant = 1.38 x 10-23 J/K and the mass of H is m = 3.32 x 10-27 kg)arrow_forward
arrow_back_ios
arrow_forward_ios