College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A speaker is placed at the end of a resonant tube. One end is closed and one end is open. The picture shows three lengths where the sound gets noticeably louder.
The first standing wave mode is shown. Sketch the second and third standing wave modes.
(For the first mode, our sketch tells us that L1= λ/4)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Using special techniques called string harmonics, stringed instruments can produce the first few overtones of the harmonic series. While a violinist is playing some of these harmonies for us, we take a picture of the vibrating string. Using an oscilloscope, we find the violinist plays a note with frequency f=795 Hz in figure (a). a) In terms of the fundamental frequency f1, what us the frequency of the note the violinist is playing in figure (c)? Answer in the form "fc=" b) Write a general expression for the frequency of any note the violinist can play in this manner, in terms of the fundamental frequency f1 and the number of antinodes on the standing wave A. Answer in the form "fA="arrow_forward3.7 Two sinusoidal waves in a string are defined by the wave functions Y₁ = 2.20 sin (17.0x - 35.0t) Y₂ = 2.20 sin (29.0x - 45.0t) where x, y₁, and y₂ are in centimeters and it is in seconds. (a) What is the phase difference between these two waves at the point x = 5.00 cm at t = 2.00 s? (Your answer should be between 0° and 360°.) (b) What is the positive x value closest to the origin for which the two phases differ by ± at t = 2.00 s? (At that location, the two waves add to zero.) cmarrow_forwardA sound wave enters the thin tube at P and exits at Q. Assume r = 0.41m and the wavelength is 1.86m. What is the smallest length d that results in destructive interference at Q?arrow_forward
- Consider a 1 meter-long string with a mass of 50 g attached to a string vibrator. The tension in the string is 80 N. When the string vibrator is turned on, it oscillates with a frequency of 64 Hz and produces a sinusoidal wave on the string with an amplitude of 4 cm and a constant wave speed. Give your answers to 3 sig fig. A)VWhat is the linear density of the medium?____kg/m B)What is the wave speed?____m/s C)What is the angular frequency?______Hz D) What is the time-averaged power supplied to the wave by the string vibrator?___Warrow_forwardWhat is the length of a string that has a standing wave with four nodes (including those at the ends) and λ = 24 cm?arrow_forwardThe following graph shows the superposition of two identical sound waves that are out of phase. Sketch the resulting sound wave on the graph and identify the type of interference. What does this mean for the listener hearing these two waves simultaneously? mo 2.38 3.30 Aarrow_forward
- Problem 1: The figure below shows four identical point sources of sound that are uniformly spaced on an x-axis. Sq d- d S3 d S4 P The sources emit sound at the same wavelength X and same amplitude A, and they emit in phase. A point P is shown on the x axis. Assume that as the sound waves travel to P, the decrease in their amplitude is negligible. What multiple of A is the amplitude of the net wave at P if distance d in the figure is (a) X/4, (b) A/2, and (c) X?arrow_forward0.0058 kg/m is fixed at both ends. A 5.0-kg mass is hung from A string with a linear mass density of the string, as shown. If a pulse is sent along section A, what is the wave speed in section A and the wave speed in section B? %D B. A FA 35° 5 kg Image Description VA m/s VB = m/s B.arrow_forwardThe figure below shows the maximum displacement for a standing wave pattern. The earliest time between the two flashes (the solid and the dotted lines) is 0.025 s. The wave functions for the two waves that interfere to produce the standing wave pattern shown in the figure are: t=0 t= 0.025 s 0.5 m O y_1 (x,t)=2mm sin(4Tx-20nt) and y_2 (x,t)=2mm sin(4Ttx+20nt) O y-1 (x,t)=2mm sin(2rtx-40nt) and y_2 (x,t)=2mm sin(2X+40nt) O y-1 (x,t)=1mm sin(2rtx-20nt) and y_2 (x,t)=1mm sin(2x+20t) O y_1 (x,t)=1mm sin(2nx-40nt) and y_2 (x,t)=1mm sin(2nx+40rt)arrow_forward
- Chapter 17, Problem 020 The figure shows four isotropic point sources of sound that are uniformly spaced on an x axis. The sources emit sound at the same wavelength and same amplitude sm, and they emit in phase. A point P is shown on the x axis. Assume that as the sound waves travel to P, the decrease in their amplitude is negligible. What multiple of sm is the amplitude of the net wave at P if distance d in the figure is (a)1A, (b)2, and (c)4/? (a) Number (b) Number (c) Number Units Units Units S₁ Sa Sa + S₁arrow_forwardA row of seats is parallel to a stage at a distance of 8.4 m from it. At the center and front of the stage is a diffraction horn loudspeaker. This speaker sends out its sound through an opening that is like a small doorway with a width D of 0.074 m. The speaker is playing a tone that has a frequency of 2.00 104 Hz. The speed of sound is 343 m/s. What is the distance between two seats, located near the center of the row, at which the tone cannot be heard?arrow_forwardA wave is modeled by the wave function: y (x, t) = A sin [ 2π/0.1 m (x - 12 m/s*t)] 1. Find the wavelength, wave number, wave velocity, period and wave frequency. 2. Construct on the computer, in the same graph, the dependence of y (x, t) from x on t = 0 and t = 5 s in case the value of amplitude A corresponds to the first letter of your name: letter E A. A=0.1 mB. A=0.15 mC. A=0.2 mÇ. A=0.25 mD. A=0.3 mDh. A=0.35 mE. A=0.4 mË. A=0.45 mF. A=0.5 m G. A=0.55 mGj. A=0.6 mH. A=0.65 mI. A=0.7 mJ. A=0.75 mK. A=0.8 mL. A=0.85 mLl. A=0.9 mM. A=0.95 m N. A=1.05 mNj. A= 1.1 mO. A=1.15 mP. A=1.2 mQ. A=1.25 mR. A=1.3 mRr. A=1.35 mS. A=1.4 mSh. A=1.45 m T. A=1.5 mTh. A=1.55 mU. A=1.6 mV. A=1.65 mX. A=1.7 mXh. A=1.75 mY. A=1.8 mZ. A=1.85 mZh. A=1.9 m 3. After constructing the graph, make the appropriate interpretations and comments from the result that you got graphically. 4. How much is the wave displaced during the time interval from t = 0 to t = 5 s? Does it match this with the graph results?…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON