
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Refrigerant-134a at 800 kPa and 25°C is throttled to a temperature of 20°C. Determine the pressure and the internal energy of the refrigerant at the final state. |
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In a gasoline engine, the cylinder conditions are 1.2 MPa and 450°C before the combustion and 1900°C after it. Determine the pressure at the end of the combustion processarrow_forwardA commercial airliner is flying at an altitude where the temperature and pressure of the air are -50°C and 26.5 kPa. An engine-driven compressor will take this air at T= -50°C, P₁ = 26.5 kPa and compress it to P₂ = P₂ = 85.0 kPa to pressurize the cabin. The air will be very hot when it exits the compressor, so a heat exchanger will be used to cool the air to T, = 20°C before it enters the cabin. Cold air at T₁ = -50°C will be used in the heat exchanger to cool the cabin air, and this air will exit the heat exchanger at T = 20°C (this air will be used to heat the cargo bay). The mass flow rate of the air delivered to the cabin is 0.80 kg/s and the compressor efficiency is 75%. Model the air as an ideal gas having constant specific heat, using 300 K values from Cengel's tables posted on Canvas. a) Find the actual temperature of the air exiting the compressor and the power input to the compressor (answers: 67.6°C and 94.5 kW). b) Find the rate of heat transfer in the heat exchanger and…arrow_forwardA piston cylinder contains 1.25 kg water at 25°C with a constant load on the piston such that the pressure is 300 kPa. A nozzle in a line to the cylinder is opened to enable flow to the outside atmosphere at 100 kPa and 25°C. The process continues until 85% of the initial mass has flowed out. At this point, the temperature of water increased by 10°C. Assume that the process is done in an Water isobaric manner. Write the mass and energy balance equations and calculate the work (kJ) and heat (kJ) involved in the process if the exit velocity is 40 m/s. For compressed liquid, assume the substance is a saturated liquid at the given temperature.arrow_forward
- Air with a mass of 3 kg is heated at a constant volume from a temperature of 25°C to 80°C. The process then takes place at constant pressure so that the gas has a temperature of 150°C. Determine the heat required and the entropy changes that occur during the process. (Air: Cp =1,005 kJ/kg. K and γ = 1.4; and assume Cp does not change against temperature)arrow_forwardR-134a enters a compressor as a saturated vapor at 80 kPa and exits at a pressure of 400 kPa. If 44 kJ/kg of work is required and 5 kJ/kg of heat is lost to the surroundings. What is the outlet temperature. Round your answer to the nearest whole number.arrow_forward5-62 Refrigerant-134a is throttled from the saturated liquid state at 700 kPa to a pressure of 160 kPa. Determine the tem- perature drop during this process and the final specific vol- ume of the refrigerant. Answers: 42.3°C, 0.0345 m³/kg P₁ = 700 kPa sat. liquid R-134a P₂ = 160 kPa FIGURE P5-62arrow_forward
- A man purchases a turbine for use in his factory. He sets it up so that there is steam entering at 5000 kpa and at 873.15 Kelvin at a constant rate of 100 m/sec. This steam seems to leave the turbine at 100 m/sec and of 95% quality at a pressure of 0.01MPa. The manufacturer sticker claims the turbine has a power output known to be 56400 Joules per second. Find the theoretical mass flowrate of the steam through the device [kg/sec] and the area of the outlet [m^2]arrow_forwardAn expansion valve is a part of an adiabatic rigid steam boiler. Steam's initial pressure and temperature are set to 1 MPa and 350°C. In a matter of seconds, the tank's expansion valve was opened, causing it to fill to capacity. Calculate the pressure in the expansion valve if the steam flowing through it has a temperature of 300C.arrow_forwardAn adiabatic capillary tube is used in some refrigeration systems to drop the pressure of the refrigerant from the condenser level to the evaporator level. The R-134a enters the capillary tube as a saturated liquid at 50°C and leaves at -22.00°C. Determine the quality of the refrigerant at the inlet of the evaporator. Use data from the tables. (Round the final answer to three decimal places.) The quality of the refrigerant isarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY