
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:Refrigerant R-134a enters an adiabatic compressor as saturated vapor at 100kPa at a rate of
0.5kg/s and exits at 1 MPa pressure. If the isentropic efficiency is 85%, what is the temperature
of the refrigerant at the exit of the compressor?
Expert Solution

Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 4 images

Knowledge Booster
Similar questions
An adiabatic steam nozzle has steam entering at 500 kPa, 200°C, and 30 m/s, and leaving as a saturated vapor at 200 kPa. Calculate the second-law efficiency of the nozzle. Take T0 = 25°C
arrow_forward
Thermal dynamics
Steam enters a turbine at 20kg/s, 900 degrees C and 8MPa. 20% of the steam is left at pressure of 400kPa, and the remaining is left at the exhaust pressure of 50 kPa. If the isentropic efficiency of the turbine is 80%, determine the actual power generated by this turbine, and the temperature at both the intermediate port and exhaust port.
arrow_forward
Refrigerant R-134a enters a continuous flow adiabatic compressor as saturated steam at a speed of 2 kg/s at -14 OC and is compressed to 0.8 MPa and 70 oC. If the kinetic and potential energy exchange is neglected, what is the power consumed by the compressor?
a)110 kW
b)130 kW
c)78 kW
d)94 kW
(please can you help quickly)
arrow_forward
Water vapor enters a reversible-adiabatic (isentropic) turbine with 4 MPa pressure, 500C temperature and 60 m / s velocity and exits the turbine with 75kPa pressure and 140 m / s velocity. Since the flow rate of the steam entering the turbine is 1 kg / h, find the power of the turbine.
arrow_forward
Water enters a pump at 100 kPa and 30°C at a rate of 1.35 kg/s and leaves at 4 MPa. If the pump has an isentropic efficiency of 70 percent, determine the second-law efficiency for an environment temperature of 20°C.
arrow_forward
Refrigerant-134a is to be cooled by water in a condenser. The refrigerant enters the condenser with a mass flow rate of 6 kg/min at 1 MPa and 70oC and leaves at 35oC. The cooling water enters at 300 kPa and 15C and leaves at 25oC. Neglecting any pressure drops, determine ;
i. The mass flow rate of the cooling water required.ii. The heat transfer rate from the refrigerant to water.
arrow_forward
R-134a enters an adiabatic compressor as a saturated vapor at 120kpa at a rate of 0.5 m³/min and exits at 1.2Mpa pressure. If the isentropic efficiency of the compressor is 75 percent, determine:
a. The temperature at the exit. b. The power input..
arrow_forward
Refrigerant-134a is expanded adiabatically from 100 psia and 100°F to a pressure of 10 psia. Determine the entropy generation for this process, in Btu/lbm·R.
arrow_forward
An isentropic steam turbine processes 5.5 kg/s of steam at 3 MPa, which is exhausted at 50 kPa and 100°C. Five percent of this flow is diverted for feedwater heating at 500 kPa. Determine the power produced by this turbine. Use steam tables.
arrow_forward
Argon gas enters an adiabatic turbine at 1350°F and 200 psia at a rate of 40 lbm/min and exhausts at 20 psia. If the power output of the turbine is 105 hp, determine the isentropic efficiency.
arrow_forward
Steam enters an adiabatic turbine at 2.5MPa pressure and 450C, and at 60kPa pressure and 100C. comes out. If the power output of the turbine is 3MW, the mass flow and the isentropic efficiency of the turbine calculate.
arrow_forward
The power output of an adiabatic turbine is 6.1 MW. Steam at a rate of 7 kg/s enters the turbine at 7 MPa, 600°C, and 80 m/s and leaves at 50 kPa, 150°C, and 140 m/s. Determine the isentropic efficiency of the turbine.
arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY