
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
thumb_up100%
Hi, I am in phyiscs one and they have the problem :When you stand on a trampoline, the surface depresses below equilibrium, and the surface pushes up on you, as the data for a real trampoline in (Figure 1) show. The linear variation of the force as a function of distance means that we can model the restoring force as that of a spring. A 72 kg gymnast jumps on the trampoline. At the lowest point of his motion, he is 0.80 m below equilibrium.
If we assume that all of the energy stored in the trampoline goes into his motion, how high above this lowest point will he rise?
Please break down this problem in a simple way so I can understand for the steps. Thank you!

Transcribed Image Text:Restoring force (N)
1600
800
0
0
0.25
0.50
Distance below equilibrium (m)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An orthodontic spring, connected between the upper and lower jaws, is adjusted to provide no force with the mouth open. When the patient closes her mouth, however, the spring compresses by 6.0 mm. What force is exerted if the spring constant is 160 N/m?arrow_forwardA 4.50 x 105 kg subway train is brought to a stop from a speed of 0.500 m/s in 0.300 m by a large spring bumper at the end of its track. What is the force constant k of the spring (in N/m)? (Enter a number.) N/marrow_forwardA 1.50-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Figure a). The object has a speed of vi = 3.30 m/s when it makes contact with a light spring (Figure b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Figure c). The object is then forced toward the left by the spring (Figure d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Figure e). a) Find the distance of compression d (in m). b) Find the speed v (in m/s) at the unstretched position when the object is moving to the left (Figure d). c) Find the distance D (in m) where the object comes to rest. d) If the object becomes attached securely to the end of the spring when it makes contact, what is the new value of the distance D (in m) at which the object will come to rest after moving to the left?arrow_forward
- A crate of mass m1 slides down a well-lubricated hill of height h, with negligible friction. At the bottom, where it is moving horizontally, it collides with another crate, of mass m2, that initially was sitting at rest and that is attached to a wall by a spring of spring constant k that initially is at its equilibrium length. Assume that the spring itself has negligible mass. a)Given that the distance d that the crates compress the spring is d=0.35 m, calculate the speed v2 of the crates immediately after the collision, in units of meters per second. Use the following values:k=950 N/mm1=2.4 kgm2=2.6 kgμ=0.49g=9.8 m/s2 b) What was the speed of the crate of mass m1 just before the collision with the second block, in meters per second? c)What is the height h of the hill, in meters?arrow_forwardA 3.00 kg box that is sliding on frictionless surface with a speed of 15 m/s approaches a horizontal spring. The spring has a spring constant of 1900 N/m. m 10000000 How far will the spring be compressed in stopping the box? Submit Answer Tries 0/10 How far will the spring be compressed when the box's speed is reduced to half of its initial speed? Note: This is not saying that the box starts with half of the original speed, the box still starts with 15 m/s, the question asks how far the spring will have been compressed when it has slowed the box to half of that speed. Submit Answer Tries 0/10arrow_forwardA block is hung from the end of a spring with spring constant 15 N/m and made to vibrate up and down with a maximum speed of 0.4m/s. The spring is held up by a force sensor, which is set to read 0N when the block is at rest on the end of the spring. The graph attached belwo shows the reading on the force sensor over time as the block vibrates. Plot the position-time and velocity-time graphs for the blocks as it vibrates. Explain with work and in words how you determined the shapes of these as well as their amplitudes.arrow_forward
- A 500-g block is released from rest and slides down a frictionless track that begins 2.28 m above the horizontal, as shown in the figure below. At the bottom of the track, where the surface is horizontal, the block strikes and sticks to a light spring with a spring constant of 34.5 N/m. Find the maximum distance the spring is compressed. m 500 g harrow_forwardA 500-g block is released from rest and slides down a frictionless track that begins 1.86 m above the horizontal, as shown in the figure below. At the bottom of the track, where the surface is horizontal, the block strikes and sticks to a light spring with a spring constant of 16.0 N/m. Find the maximum distance the spring is compressed. 50 0g h karrow_forwardA 5.00 ✕ 105 kg subway train is brought to a stop from a speed of 0.500 m/s in 0.300 m by a large spring bumper at the end of its track. What is the force constant k of the spring (in N/m)? N/marrow_forward
- Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as in the figure below. The helper spring engages when the main leaf spring is compressed by distance Yo' then helps to support any additional load. Consider a leaf spring constant of 5.35 × 105 N/m, helper spring constant of 3.60 × 105 N/m, and y₁ = 0.500 m. Truck body Yo Axle (a) What is the compression of the leaf spring for a load of 4.10 × 105 N? 0.69 Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. m (b) How much work is done compressing the springs? J andarrow_forwardPlease don't provide handwritten solution....arrow_forwardDuring spring semester at MIT, residents of the parallel buildings of the East Campus dorms battle one another with large catapults that are made with surgical hose mounted on a window frame. A balloon filled with dyed water is placed in a pouch attached to the hose, which is then stretched through the width of the room. Assume that the stretching of the hose obeys Hooke's law with a spring constant of 130 N/m. If the hose is stretched by 5.30 m and then released, how much work does the force from the hose do on the balloon in the pouch by the time the hose reaches its relaxed length?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON