-31 Suppose an electron (q = - e= - 1.6 x 10-19 C.m 9.1 x 10 kg) is accelerated from rest through a potential difference of Vab = +5000 V. Solve for the final speed of the electron. Express numerical answer in two significant figures. The potential energy U is related to the electron charge (-e) and potential Vab is related by the equation: U = Assuming all potential energy U is converted to kinetic energy K, K +U = 0 K = -U Since K = mv and using the formula for potential energy above, we arrive at an equation for speed: V = ( 1/2 Plugging in values, the value of the electron's speed is: x 107 m/s V=

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter20: Electric Potential And Capacitance
Section: Chapter Questions
Problem 10P: Three particles with equal positive charges q are at the corners of an equilateral triangle of side...
icon
Related questions
Question
Suppose an electron (q = -e= - 1.6 × 10¬19 C,m = 9.1 x 10-31 kg) is accelerated from rest through a potential
difference of Vab = +5000 V. Solve for the final speed of the electron. Express numerical answer in two significant figures.
The potential energy U is related to the electron charge (-e) and potential Vab is related by the equation:
U =
Assuming all potential energy U is converted to kinetic energy K,
K+U = 0
K = -U
1
mv and using the formula for potential energy above, we arrive at an equation for speed:
Since K=
V = (
1/2
Plugging in values, the value of the electron's speed is:
x 107 m/s
V=
Transcribed Image Text:Suppose an electron (q = -e= - 1.6 × 10¬19 C,m = 9.1 x 10-31 kg) is accelerated from rest through a potential difference of Vab = +5000 V. Solve for the final speed of the electron. Express numerical answer in two significant figures. The potential energy U is related to the electron charge (-e) and potential Vab is related by the equation: U = Assuming all potential energy U is converted to kinetic energy K, K+U = 0 K = -U 1 mv and using the formula for potential energy above, we arrive at an equation for speed: Since K= V = ( 1/2 Plugging in values, the value of the electron's speed is: x 107 m/s V=
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Relativistic Energy and momentum
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax