
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
Suppose you measure a standing person’s blood pressure by placing the cuff on his leg 0.500 m below the heart. Calculate the pressure you would observe (in units of mm Hg) if the pressure at the heart were 120 over 80 mm Hg. Assume that there is no loss of pressure due to resistance in the circulatory system (a reasonable assumption, since major arteries are large).
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Smoking can cause a person's arteries to constrict to 90 % of their normal radius. If the usual pressure difference needed to maintain a healthy blood flow rate in an artery is 405 Pa, what new pressure difference is needed to maintain the same volume flow rate (NOT flow speed)? You may assume that the artery has a length of 10 cm, a radius of 2 mm, and that blood has a viscosity of 2.7×10−3N⋅s/m2.7×10−3N⋅s/m. (in Pa) 450 328 617 500 266arrow_forwardThe aqueous humor in a person's eye is exerting a force of 0.254 N on the 1.27 cm2 area of the cornea. (a) What pressure is this in mm Hg? (b) Is this value within the normal range for pressures in the eye? (YES/NO)arrow_forwardIn scuba diving, a regulator is used so that the pressure of the air the diver breathes is close to that of the ambient water. A reckless swimmer decides to use a hose sticking out of the surface to breathe underwater while diving in a lake. When the air pressure in the lungs is at a pressure of around 0.150 atmospheres below the ambient pressure, lung injury may occur. Find the depth at which the swimmer would experience such a pressure differential.arrow_forward
- A medical technician is trying to determine what percentage of a patient's artery is blocked by plaque. To do this, she measured the blood pressure just before the region of blockage and finds that it is 1.20 × 104 Pa, while in the region of blockage it is 1.15 x 104 Pa. Furthermore, she knows that blood flowing through the normal artery just before the point of blockage is travelling at 30.0 cm/s. What percentage of the cross-sectional area of the patient's artery is blocked by the plaque?arrow_forwardSuppose you measure a standing person’s blood pressure by placing the cuff on his leg 0.495 m below the heart. For this problem, assume that there is no loss of pressure due to resistance in the circulatory system (a reasonable assumption, since major arteries are large). The density of blood is 1.05 × 103 kg/m3. Calculate the systolic pressure you would observe, in units of mm Hg, if the pressure at the heart was 120 over 80 mm Hg. Note that the to (and greater) number is systolic pressure. Ps? Calculate the diastolic pressure you would observe, in unites of mm Hg, if the pressure at heart was 120 overc80cmm Hg. Note that the bottom (smaller) number is the diastolic pressure.Pd?arrow_forwardA large tub is filled with water, and it is found that the pressure at the bottom is 1) 1.12 x 105 Pa. The same tub is then filled with mercury. What is the new pressure at the bottom of the tub?arrow_forward
- At a given instant, the blood pressure in the heart is 1.4 x 10^4 Pa. If an artery in the brain is 0.49m above the heart, what is the pressure in the artery? Ignore any pressure changes due to blood flow.arrow_forwardSuppose you measure a standing person’s blood pressure by placing the cuff on his leg 0.525 m below the heart. For this problem, assume that there is no loss of pressure due to resistance in the circulatory system (a reasonable assumption, since major arteries are large). The density of blood is 1.05×103 kg/m3 a. Calculate the systolic pressure you would observe, in units of mm Hgmm Hg, if the pressure at the heart was 120 over 80 mm Hg. Note that the top (and greater) number is the systolic pressure. b. Calculate the diastolic pressure you would observe, in units of mm Hgmm Hg, if the pressure at the heart was 120 over 80 mm Hg. Note that the bottom (smaller) number is the diastolic pressure.arrow_forwardAt 20°C, the viscosity of water is 1.0x10-3 Pa-s and the viscosity of molasses is 51 Pa-s. Consider two tubes of the same length L, with fixed pressure difference Ap across each pipe. If water flows through Pipe 1 and molasses flows through Pipe 2, and both have the same flow rate Q, what is the ratio of the radius of Pipe 2 to Pipe 1?arrow_forward
- A fusiform aneurysm bulges or balloons out an artery on all sides (pictured below). If this aneurysm occurs in an aorta, the internal radius may increase from r₁ = 1.1 cm in the normal, healthy section to 12= = 2.2 cm in the diseased section (while staying at the same vertical height). The speed of blood m flow is v₁ = 0.42 in the normal section and the gauge pressure P₁ is 99.98 mmHg. The density of 1 S blood is 1060 kg m³ Fusiform Aneurysm Image from: http://www.okclipart.com/Fusiform-Aneurysm-Clip-Art30koqyaskv/ (a) Calculate the speed of blood v2 in the aneurysm. Answer to two significant figures. Think: What equations dictating the flow through the valve are valid, equation of continuity, Bernoulli or Poiseuille? What simplifications should you make regarding the blood flow. m V₂ = S (b) Calculate the pressure gradient AP = P aneurysm healthy aorta from the healthy aorta into the aneurysm. Think: What equations dictating the flow through the valve are valid, equation of…arrow_forwardWhen you hold your hands at your sides, you may have noticed that the veins sometimes bulge—the height difference between your heart and your hands produces increased pressure in the veins. The same thing happens in the arteries. Estimate the distance that your hands are below your heart. If the average arterial pressure at your heart is a typical 100 mm Hg, what is the average arterial pressure in your hands when they are held at your side?arrow_forwardIn an industrial cooling process, water is circulated through a system. If water is pumped with a speed of 5.20 m/s under a pressure of 5.00*10^5 Pa from the first floor through a 3.80-cm diameter pipe, what will be the pressure on the next floor 3.50 m above in a pipe with a diameter of 3.00 cm?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON