The figure below shows a conducting rod sliding along a pair of conducting rails. The conducting rails have an angle of inclination of θ=30 degrees. There is a resistor at the top of the ramp that connects the two conducting rails R=2.3Ω. The mass of the rod is 0.42 kg. The rod starts from rest at the top of the ramp at time t=0. The rails have negligible resistance and friction, and are separated by a distance L=15.7 m. There is a constant, vertically directed magnetic field of magnitude B=1.5 T. A) Find the emf induced in the rod as a function of its velocity down the rails. What is the emf when the velocity is 5.696E−03 m/s? B) What is the rod's terminal speed? C) When the rod moves at its terminal speed, what is the power dissipated in the resistor?

University Physics Volume 3
17th Edition
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:William Moebs, Jeff Sanny
Chapter1: The Nature Of Light
Section: Chapter Questions
Problem 77AP: Cornu performed Fizeau’s measurement of the speed of light using a wheel of diameter 4.00 cm that...
icon
Related questions
Question

The figure below shows a conducting rod sliding along a pair of conducting rails. The conducting rails have an angle of inclination of θ=30 degrees. There is a resistor at the top of the ramp that connects the two conducting rails R=2.3Ω. The mass of the rod is 0.42 kg. The rod starts from rest at the top of the ramp at time t=0. The rails have negligible resistance and friction, and are separated by a distance L=15.7 m. There is a constant, vertically directed magnetic field of magnitude B=1.5 T.

A) Find the emf induced in the rod as a function of its velocity down the rails. What is the emf when the velocity is 5.696E−03 m/s?

B) What is the rod's terminal speed?

C) When the rod moves at its terminal speed, what is the power dissipated in the resistor?

R
Top
View
11111
Side View
11
و
B
Transcribed Image Text:R Top View 11111 Side View 11 و B
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Magnetic field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
University Physics Volume 3
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning