
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The Figure shows a wire with a kink.The wire has a resistance of 3.85 W. A uniform magnetic field with a magnitude of 17.0 mT is directed out of the paper. The diameter of the kink initially is 1.75 cm.
(a) The wire is quickly pulled taut, and the kink shrinks to a diameter of zero in 25.0 ms. Determine the average induced current between endpoints A and B, and include its direction.
(b) Suppose the kink is undisturbed, but the magnetic field changes to -100 mT in 4.00x10-3 s. Determine the average voltage across terminals A and B, including polarity, during this period.

Transcribed Image Text:A
B
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A current I = 3 A is passed through a wire. A second wire of length L = 1 m is moving with velocity v= 285.4 m s¨¹ at a distance d=1 cm perpendicular to the magnetic field generated by the first wire (see sketch below). Calculate the current in the circuit that includes the second wire and a stationary piece of wire (green in the sketch below). Take the resistance in the circuit to be 10 Q2 (Ohm). Consider the magnetic field B to be constant over the range of motion of the second wire (i.e. d » 1 ). For the permeability of vacuum take μo = 1.3×10-6 NA². Provide your answer in milliamperes (mA). Enter your answer in the box below. Wire 1 Wire 2 اد Wire looparrow_forwardIt is desired to construct a solenoid that will have a resistance of 5.30 Ω (at 20°C) and produce a magnetic field of 4.00 ✕ 10−2 T at its center when it carries a current of 3.40 A. The solenoid is to be constructed from copper wire having a diameter of 0.500 mm. If the radius of the solenoid is to be 1.00 cm, determine the following. (The resistivity of copper at 20°C is 1.7 ✕ 10−8 Ω · m.) (a) the number of turns of wire needed to build the solenoid (b) the length the solenoid should have, in cm.arrow_forwardConsider the RL direct current circuit shown. The circuit contains R = 4.0 Ω, L = 10 mH, & ε = 12 V. The circuit is charging. (a) Determine the time constant for the circuit? (b) What is the maximum current in the circuit? (c) What is the current one time constant (t = τ )? (d) When the current is 0.5 A, what is the strength of the magnetic field in the solenoid, with n = N/ℓ = 319x103 turns/m. ( T×m/A)arrow_forward
- A loop of highly conducting wire is placed in a magnetic field that is increasing out of the page (through the loop) at a rate of 1.80 T/s. If the loop has an area of 0.400m^2, calculate the current flowing in Amps through the 5.00 ohm resistor.arrow_forwardIt is desired to construct a solenoid that will have a resistance of 5.60 N (at 20°C) and produce a magnetic field of 4.00 X 10¬2T at its center when it carries a current of 3.10 A. The solenoid is to be constructed from copper wire having a diameter of 0.500 mm. If the radius of the solenoid is to be 1.00 cm, determine the following. (The resistivity of copper at 20°C is 1.7 × 10-8 0· m.) (a) the number of turns of wire needed to build the solenoid 1029 v turns (b) the length the solenoid should have X cm 1.034*10**7arrow_forwardIt is desired to construct a solenoid that will have a resistance of 4.15 2 (at 20°C) and produce a magnetic field of 4.00 x 10-2 T at its center when it carries a current of 5.00 A. The solenoid is to be constructed from copper wire having a diameter of 0.500 mm. If the radius of the solenoid is to be 1.00 cm, determine the following. (The resistivity of copper at 20°C is 1.7 x 10-8 0 • m.) (a) the number of turns of wire needed to build the solenoid turns (b) the length the solenoid should have cmarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON