
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
![### Calculating the Derivative Limit
**Objective:**
The limit below represents a derivative \( f'(a) \). Determine \( f(x) \) and \( a \).
\[ \lim_{h \to 0} \frac{\sin\left(\frac{\pi}{2} + h\right) - 1}{h} \]
**Options:**
**Function \( f(x) \) Options:**
1. \( f(x) = \sin(x + y) \)
2. \( f(x) = \sin(x + h) \)
3. \( f(x) = \sin(x) \)
4. \( f(x) = \frac{\sin(x)}{x} \)
5. \( f(x) = \sin(x) - 1 \)
**Point \( a \) Options:**
1. \( a = -\frac{\pi}{2} \)
2. \( a = -1 \)
3. \( a = 0 \)
4. \( a = 1 \)
5. \( a = \frac{\pi}{2} \)
**Explanation of the Limit:**
The given limit expression is a fundamental representation of the definition of the derivative:
\[ f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} \]
### Steps to Determine \( f(x) \) and \( a \):
1. Compare the given limit with the standard definition to identify \( f(a + h) \) and \( f(a) \):
\[ f(a + h) = \sin\left(\frac{\pi}{2} + h\right) \]
\[ f(a) = 1 \]
2. Recall that:
\[ \sin\left(\frac{\pi}{2} + x\right) = \cos(x) \]
3. Since \( f(a) = 1 \) and comparing with \( f(a) = \sin(a) \), we find:
\[ \sin(a) = 1 \]
This indicates:
\[ a = \frac{\pi}{2} \]
4. Therefore, the original function must be:
\[ f(x) = \sin(x) \]
### Conclusion:
- **Function \( f(x) \):** \( \sin(x) \)
- **Point](https://content.bartleby.com/qna-images/question/2d16e493-8014-4530-b66f-8d290a1d8344/c050660c-9fc3-4a27-9a75-5a9e079d8bb2/we3z4jr_thumbnail.png)
Transcribed Image Text:### Calculating the Derivative Limit
**Objective:**
The limit below represents a derivative \( f'(a) \). Determine \( f(x) \) and \( a \).
\[ \lim_{h \to 0} \frac{\sin\left(\frac{\pi}{2} + h\right) - 1}{h} \]
**Options:**
**Function \( f(x) \) Options:**
1. \( f(x) = \sin(x + y) \)
2. \( f(x) = \sin(x + h) \)
3. \( f(x) = \sin(x) \)
4. \( f(x) = \frac{\sin(x)}{x} \)
5. \( f(x) = \sin(x) - 1 \)
**Point \( a \) Options:**
1. \( a = -\frac{\pi}{2} \)
2. \( a = -1 \)
3. \( a = 0 \)
4. \( a = 1 \)
5. \( a = \frac{\pi}{2} \)
**Explanation of the Limit:**
The given limit expression is a fundamental representation of the definition of the derivative:
\[ f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} \]
### Steps to Determine \( f(x) \) and \( a \):
1. Compare the given limit with the standard definition to identify \( f(a + h) \) and \( f(a) \):
\[ f(a + h) = \sin\left(\frac{\pi}{2} + h\right) \]
\[ f(a) = 1 \]
2. Recall that:
\[ \sin\left(\frac{\pi}{2} + x\right) = \cos(x) \]
3. Since \( f(a) = 1 \) and comparing with \( f(a) = \sin(a) \), we find:
\[ \sin(a) = 1 \]
This indicates:
\[ a = \frac{\pi}{2} \]
4. Therefore, the original function must be:
\[ f(x) = \sin(x) \]
### Conclusion:
- **Function \( f(x) \):** \( \sin(x) \)
- **Point
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- please show all your workarrow_forwardHow Derivatives affect the shape of a graph. Sketch a single function f(x) that has all of the following properties.arrow_forwardFind the derivative f(x) for each function given below a) f(x) = (1+ex) (1-ex) b) f(x) = x² inx ) f cx) = 5x3 (Cosx - sinx) 4arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning