The power P required to turn a ship will depend on its velocity V , its length L, its width B, the water density ρ and viscosity µ, the rate of turning ω, and the acceleration due to gravity g. (a) Express the non-dimensional power in terms of its dependence on the other non-dimensional groups. Show all your working. (b) It is proposed to test a model ship at 1/100th scale. What scaled velocity, kinematic viscosity, and turning rate would be required for the test to be dynamically similar? Do you foresee any possible difficulties in performing this test?

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter5: Analysis Of Convection Heat Transfer
Section: Chapter Questions
Problem 5.8P
icon
Related questions
Question

The power P required to turn a ship will depend on its velocity V , its length L, its width B, the water density ρ and viscosity µ, the rate of turning ω, and the acceleration due to gravity g.

(a) Express the non-dimensional power in terms of its dependence on the other non-dimensional groups. Show all your working.

(b) It is proposed to test a model ship at 1/100th scale. What scaled velocity, kinematic viscosity, and turning rate would be required for the test to be dynamically similar? Do you foresee any possible difficulties in performing this test?

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps with 16 images

Blurred answer
Knowledge Booster
Dimensional Analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning