
An inertial frame of reference is one in which Newton's laws hold. Any frame of reference that moves at a constant speed relative to an inertial frame of reference is also an inertial frame. The proper length l0 of an object is defined to be the length of the object as measured in the object's rest frame. If the length of the object is measured in any other inertial frame, moving with speed u relative to the object's rest frame (in a direction parallel to l0), the resulting length lll is given by the length contraction equation
l= l0 *sqrt(1-u^2/ c^2)
where c is the
Δt= Δt0/ sqrt(1-u^2/ c^2)
Part A: Suppose that you measure the length of a spaceship, at rest relative to you, to be 400 m. How long will you measure it to be if it flies past you at a speed of u=0.75c?
Part B: The spaceship from Part A has a large clock attached to its side. This clock ran at the same rate as your watch when you were in the same reference frame. How much time Δt t will pass on your watch as 80s passes on the clock attached to the ship?

Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

- You and your secret celebrity crush pass each other in rockets that are each traveling 0.56c relative to the other. Your secret celebrity crush takes a nap and you decide to time how long the nap takes. In your frame, the nap takes 1.7 h. How long was the nap in your secret celebrity crush's frame? Unbeknownst to you, your secret celebrity crush's agent is onboard the celebrity's rocket and saw you timing the nap. Concerned, the agent decides to time how long you were timing the nap. In the agent's frame, how long were you timing your secret celebrity crush's nap?arrow_forward1. A spaceship A (at rest in inertial frame A) of proper length L, =75.0m is moving in the +x direction at a speed v= 0.650c as measured in the Earth frame. Another spaceship B (at rest in inertial frame B) is moving on a parallel path in the opposite direction (-x) with u, =-0.720c as measured in the Earth frame. The two spaceships pass each other. a. What is the velocity and speed parameter of spaceship B in inertial frame A, u,,B' ? b. In inertial frame A, how long does it take for the tip of spaceship B to move from the tip of spaceship A to the tail of spaceship A? c. In inertial frame B, how long does it take for the tip of spaceship B to move from the tip of spaceship A to the tail of spaceship A? d. In the Earth frame, how long does it take for the tip of spaceship B to move from the tip of spaceship A to the tail of spaceship A?arrow_forwardAn interstellar space probe is launched from Earth. After a brief period of acceleration, it moves with a constant velocity, 74.0% of the speed of light. Its nuclear-powered batteries supply the energy to keep its data transmitter active continuously. The batteries have a lifetime of 19.4 years as measured in a rest frame. Note that radio waves travel at the speed of light and fill the space between the probe and Earth at the time the battery fails. (a) How long do the batteries on the space probe last as measured by mission control on Earth? (Ignore the delay between the time the battery fails and the time mission control stops receiving the signal.) yr (b) How far is the probe from Earth when its batteries fail as measured by mission control? (Ignore the delay between the time the battery fails and the time mission control stops receiving the signal.) ly (c) How far is the probe from Earth as measured by its built-in trip odometer when its batteries fail? ly (d) For what total time…arrow_forward
- a) Suppose you decide to travel to a star 66 light-years away at a speed that tells you the distance is only 24 light-years. How many years would it take you to make the trip? Express your answer using two significant figures. b)In its own reference frame, a box has the shape of a cube 1.5 mm on a side. This box is loaded onto the flat floor of a spaceship and the spaceship then flies past us with a horizontal speed of 0.90 cc.What is the volume (m3 ) of the box as we observe it?arrow_forwardA cylindrical spaceship of length 35.0 m and diameter 8.35 m is traveling in the direction of its cylindrical axis (length). It passes by the Earth at a relative speed of 2.44××1088 m/s. a) What is the length of the ship, as measured by an Earth observer? b) What is the diameter of the ship, as measured by an Earth observer? c) How long does it take the spaceship to travel a distance of 10.0 km according to the ship's pilot? d) How long does it take the spaceship to travel a distance of 10.0 km according to an Earth-based observer?arrow_forward1. You are an observer in a 100-m long spacecraft traveling from the earth to the moon at 0.8c. (a)What is the proper length of the spacecraft? (b) For a proper time interval of 1 sec., the relativistic time interval for the spacecraft measured from the earth reference frame would be: (c)Time dilation does not apply to all time-dependent physical and biological processes. T/F? (c) What is the relativistic length, DL measured from the reference frame of earth? (d) An APOLLO crew left a flat mirror reflector on the surface of the moon (for all you deniers out there, in the 50th anniversary year of APOLLO 11!). If the average surface-to-surface distance from the earth to the moon is 3.83 x 10^8 m, then how long does it take moonlight to reach earth?arrow_forward
- Suppose 5 rocketships are all traveling in â in some frame S. The speeds are: St (min) 100 B 0 0.25 0.5 0.75 0.99 7 1 How much time passes on the clocks inside each rocketship if 100 minutes elapse on the stationary rocketship?arrow_forwardA certain type of elementary particle travels at a speed of 2.53 x 108 m/s relative to a lab. The average lifetime in the particle's rest frame is calculated to be 62.6 us. What will be the lifetime of the particle (in us) as measured by someone in the lab? (Use c = 2.9979 × 108 m/s)arrow_forwardA spaceship has a length of 20 meters at rest and accelerates to high speed. A person at rest on the ground observes that the spaceship has 12 meters. How fast (in x 108m/s) is the spaceship?arrow_forward
- The space and time coordinates for two events as measured in a frame S are as follows: Event 1: x1=x0 , t1=x0/c Event 2: x2=2x0, t2=x0/2c a. There exists a frame in which these events occur at the same time. Find the velocity of this frame with respect to S. b. What is the value of t at which both events occur in the new frame?arrow_forwardIf a m = 90.7 kg person were traveling at v = 0.875c, where c is the speed of light, what would be the ratio of the person's relativistic kinetic energy to the person's classical kinetic energy? kinetic energy ratio: What is the ratio of the person's relativistic momentum to the person's classical momentum? momentum ratio:arrow_forwardA car traveling at 35.0 m/s takes 26.0 minutes to travel a certain distance according to the driver’s clock in the car. How long does the trip take according to an observer at rest on Earth? Hint: The following approximation is helpful:arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





