Two identical twins hold on to a rope, one at each end, on a smooth, frictionless ice surface. They skate in a circle about the center of the rope (the center of mass of the two-body system) and perpendicular to the ice. The mass of each twin is 78.0 kg. The rope of negligible mass is 3.5 m long and they move at a speed of 5.40 m/s. a)What is the magnitude, in kg · m2/s, of the angular momentum of the system comprised of the two twins? (b)They now pull on the rope and move closer to each other so that the rope between them is now half as long. Determine the speed, in m/s, with which they move now. (c)The two twins have to do work in order to move closer to each other. How much work, in joules, did they do?

College Physics
10th Edition
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter7: Rotational Motion And The Law Of Gravity
Section: Chapter Questions
Problem 27P: An air puck of mass m1 = 0.25 kg is tied to a siring and allowed to revolve in a circle of radius R...
icon
Related questions
icon
Concept explainers
Question
100%

Two identical twins hold on to a rope, one at each end, on a smooth, frictionless ice surface. They skate in a circle about the center of the rope (the center of mass of the two-body system) and perpendicular to the ice. The mass of each twin is 78.0 kg. The rope of negligible mass is 3.5 m long and they move at a speed of 5.40 m/s.

a)What is the magnitude, in kg · m2/s, of the angular momentum of the system comprised of the two twins?
 
(b)They now pull on the rope and move closer to each other so that the rope between them is now half as long. Determine the speed, in m/s, with which they move now. 
 
(c)The two twins have to do work in order to move closer to each other. How much work, in joules, did they do?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Moment of inertia
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning