Two moles of molecular hydrogen (H2) react with 1 mole of molecular oxygen (O2) to produce 2 moles of water (H2O) together with an energy release of 241.8 kJ/mole of water. Suppose a spherical vessel of radius 0.500 m contains 14.4 moles of H2 and 7.2 moles of O2 at 20.0°C. (a) What is the initial pressure in the vessel? (b) What is the initial internal energy of the gas? (c) Suppose a spark ignites the mixture and the gases burn completely into water vapor. How much energy is produced? (d) Find the temperature and pressure of the steam, assuming it’s an ideal gas. (e) Find the mass of steam and then calculate the steam’s density. (f) If a small hole were put in the sphere, what would be the initial exhaust velocity of the exhausted steam if spewed out into a vacuum? (Use Bernoulli’s equation.)

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter10: Thermal Physics
Section: Chapter Questions
Problem 44P: A sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of...
icon
Related questions
Question

Two moles of molecular hydrogen (H2) react with 1 mole of molecular oxygen (O2) to produce 2 moles of water (H2O) together with an energy release of 241.8 kJ/mole of water. Suppose a spherical vessel of radius 0.500 m contains 14.4 moles of H2 and 7.2 moles of O2 at 20.0°C. (a) What is the initial pressure in the vessel? (b) What is the initial internal energy of the gas? (c) Suppose a spark ignites the mixture and the gases burn completely into water vapor. How much energy is produced? (d) Find the temperature and pressure of the steam, assuming it’s an ideal gas. (e) Find the mass of steam and then calculate the steam’s density. (f) If a small hole were put in the sphere, what would be the initial exhaust velocity of the exhausted steam if spewed out into a vacuum? (Use Bernoulli’s equation.)

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Knowledge Booster
Kinetic theory of gas
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning