Verify that it is an identity

(1-sec/tan)+(tan/1-sec)=-2csc

### Want to see the full answer?

Check out a sample Q&A here*arrow_forward*Check out a sample Q&A here

*star_border*

## Related Trigonometry Q&A

Find answers to questions asked by students like you.

Q: Verify the identity: sec θ - cos θ = tan θ sin θ

A: Given, sec θ - cos θ = tan θ sin θ

Q: Verify that the equation is an identity. tan x- sec*x =1-2 secx

A: We will use the following identity: sec2θ = 1 + tan2θ

Q: Find the exact value of cos[tan(-5)-

A: Click to see the answer

Q: Verify the identity tan(-x)cos x = -sin x.

A: To prove: tan-x cos x=-sin x

Q: Verify the identity. tan (-x) cos x= - sin x

A: This question is based on Trignometric function.

Q: Verify the identity. tan (-x) cos X - sin x

A: Click to see the answer

Q: Verify the identity: tan(-x)cos x = -sin x

A: To verify: tan(-x)cos x = -sin x We will start from LHS and will try to get RHS.

Q: Establish the identity. secθ x sinθ = tanθ

A: Click to see the answer

Q: Verify the identity: 1-cos 2x !! tan x sin 2x

A: The given identity is 1-cos2xsin2x=tanx.

*question_answer*

Q: Find the exact value of the expression. tan(an-1(금)- cos-1 (금))

A: Click to see the answer

*question_answer*

Q: Verify the identity. 2. tan0 1+ sec 0+1 F sec 0

A: Click to see the answer

*question_answer*

Q: Find the exact value of the expression. tan(sin−1(-1/2)-cos-1(-1/2))

A: According to the given information it is required to calculate the exact value of the expression:

*question_answer*

Q: Find the value of -1 tan cos -1 + tan V3

A: The given value is,tancos-112+tan-1-13

*question_answer*

Q: Find The value of tan V3 sec"(-2) |

A: Click to see the answer

*question_answer*

Q: Establish the identity tan (x - 0) = - tan 0.

A: Click to see the answer

*question_answer*

Q: Verify the identity: cos(α - β)/(cos α cos β) = 1 + tan α tan β.

A: We will use the identity

*question_answer*

Q: Find the exact value of cos(tan-1 2).

A: Click to see the answer

*question_answer*

Q: Establish the identity: csc θ x tan θ= sec θ

A: Click to see the answer

*question_answer*

Q: Use the fundamental identities to fully simplify cos (-x) sin (-x) sec (-æ).

A: Click to see the answer

*question_answer*

Q: Use the fundamental identities to fully simplify sin (-x) cos (-x) sec (-x).

A: Click to see the answer

*question_answer*

Q: write cos x in terms of tan x 1 + tan2 x = sec2 x

A: We write cos x in terms of tan x 1 + tan2 x = sec2 x

*question_answer*

Q: Verify the identity: tan θ = (1 - cos 2θ)/sin 2θ..

A: Given, tanθ=1-cos2θsin2θ

*question_answer*

Q: Find the exact value of tan-1(cosπ)

A: Find the exact value of cos (pi).

*question_answer*

Q: Find the exact value of tan-1(cosπ)

A: Click to see the answer

*question_answer*

Q: Verify that the equation is an identity. 2 sin x tan 2.r = 2 cos x - sec x

A: Click to see the answer

*question_answer*

Q: Evaluate csc(cos^-1(sin(tan^-1(a/b)))where ab is a positive real number.

A: Click to see the answer

*question_answer*

Q: Find the exact value of the expression. sin(cos+ tan+1) + tan-1

A: Click to see the answer

*question_answer*

Q: Verify the identity : (1 - cos 2x)/sin 2x = tan x

A: Given that: To use the angle formulae: cos 2x = cos 2 x - sin 2 x sin 2x = 2 sin x . cos x sin 2 x…

*question_answer*

Q: Find the exact value of the expression whenever it is defined.tan-1 (-1)

A: Given tan-1 (-1)

*question_answer*

Q: Verify the identity. (Simplify at each step.) tan(프-0)tan θ 3D1 ] Jan a tan tan 0 tan 0 = 1 I|

A: Proceed as shown ...

*question_answer*

Q: Verify that the equation is an identity. In|sin.x| + In|sec.x| = In|tan.x|

A: We have to verify that the given equation is an identity: lnsin x+lnsec x=lntan x Solving the given…

*question_answer*

Q: Verify the identity: sin (x + π/2) = cos x

A: We have to verify the identity sinx+π2=cosx We know that sina+b=sina cosb+cosa sinb Using the…

*question_answer*

Q: Find the exact value of expression tan-1(-1).

A: Inverse circular function: Exact value of tan-1(-1).…

*question_answer*

Q: Find the exact value for which 0st< 2n. tan-1

A: Given: tan-1-33 To find: The exact value for which 0 ≤ t ≤ 2π.

*question_answer*

Q: Verify the identity. sec X• sin x= tan x

A: Click to see the answer

*question_answer*

Q: Use an identity to solve the equation tan x + sec x = 1 on the interval [0, 2π).

A: Given equation is tan(x)+sec(x)=1 And given interval is [0, 2π).

*question_answer*

Q: Find The value of tan 3 - c"(-2) sec

A: Value of inverse

*question_answer*

Q: Establish the identity. sin =1- sin x

A: Click to see the answer

*question_answer*

Q: Verify the identity: tan x csc x cos x = 1

A: Known facts: tanx=sinxcosxcscx=1sinx

*question_answer*

Q: Use an identity to solve the equation tan x - sec x = 1 on the interval [0, 2π).

A: The given equation is tanx-secx=1.

*question_answer*

Q: Find the exact value cos[(tan^-1(4/3)+cos^-1(5/13)]

A: Click to see the answer

*question_answer*

Q: Use the fundamental identities to fully simplify sin(−x)cos(−x)sec(−x).

A: We have to simplify sin(−x) cos(−x) sec(−x).

*question_answer*

Q: Write the expression as an algebraic expression in x for x > 0.tan (arccos x)

A: Recall the trigonometric identities, sin x=1-cos2x tanx=sinxcosx

*question_answer*

Q: Verify the identity. sin 0-1 tan 0- sec 0 %3D cos e

A: Here we use basic identities of trigonometric ratios.

*question_answer*

Q: Verify the identity. tan (1-0) = - tan 0

A: Click to see the answer

*question_answer*

Q: Use the fundamental identities to fully simplify the expression. sin(x) cos(x) sec(x)

A: Given:

*question_answer*

Q: Establish the identity. (sec 0+ tan 0)( sec 0- tan 0) = 1

A: We have to prove

*question_answer*

Q: use the sum and difference identities to find the exact value of tan ( 75 ° )

A: Click to see the answer

*question_answer*

Q: Rewrite cos x + 3 in terms of sin(x) and cos(x). COS

A: Click to see the answer

*question_answer*

Q: Use an identity to solve the equation sin 2x = cos x on the interval [0, 2π).

A: Given: sin2x=cosx; x∈[0,2π) we know that sin2θ=2sinθcosθ