Expansion of Dawson’s function in a series of Chebyshev polynomials
Author:
David G. Hummer
Journal:
Math. Comp. 18 (1964), 317319
MSC:
Primary 65.25
DOI:
https://doi.org/10.1090/S00255718196401656876
MathSciNet review:
0165687
Fulltext PDF Free Access
References  Similar Articles  Additional Information

D. Harris III, “On the lineabsorption coefficient due to Doppler effect and damping,” Astrophys. J., v. 108, 1948, p. 112115.
D. G. Hummer, “Noncoherent scattering. I. The redistribution functions with Doppler broadening,” Monthly Notices Roy. Astronom. Soc., v. 125, 1963, p. 2137.
W. L. Miller & A. R. Gordon, “Numerical evaluation of infinite series and integrals which arise in certain problems of linear heat flow, electrochemical diffusion, etc.,” J. Chem. Phys., v. 35, 1935, p. 27852884.
 J. Barkley Rosser, Theory and Application of $\int _{0^z}e^{x^{2}}dx$ and $\int _{0^z}e^{p^{2}y^{2}}dy\int ^y_0 e^{x^{2}}dx$. Part I. Methods of Computation, Mapleton House, Brooklyn, N. Y., 1948. MR 0027176
 Bengt Lohmander and Stig Rittsten, Table of the function $y=e^{x^{2}}\int ^{x} _{0}\,e^{t^{2}}dt$, Kungl. Fysiografiska Sällskapets i Lund Förhandlingar [Proc. Roy. Physiog. Soc. Lund] 28 (1958), 45–52. MR 94919 H. M. Terrill & L. Sweeny, “An extension of Dawson’s table of the integral of ${e^{{x^2}}}$,” J. Franklin Inst., v. 237, 1944, p. 495497; “Table of the integral of ${e^{{x^2}}}$,” ibid., v. 238, 1944, p. 220222.
 Modern computing methods, Notes on Applied Science, No. 16, Her Majesty’s Stationery Office, London, 1961. 2nd ed; National Physical Laboratory. MR 0117863
 C. W. Clenshaw, A note on the summation of Chebyshev series, Math. Tables Aids Comput. 9 (1955), 118–120. MR 71856, DOI https://doi.org/10.1090/S00255718195500718560
Retrieve articles in Mathematics of Computation with MSC: 65.25
Retrieve articles in all journals with MSC: 65.25
Additional Information
Article copyright:
© Copyright 1964
American Mathematical Society