Bartleby Sitemap - Textbook Solutions

All Textbook Solutions for Practical Management Science

1P2P3P4P5P6P7P8P9P10P11P12P13P14P15P16P17P18P19PJulie James is opening a lemonade stand. She believes the fixed cost per week of running the stand is 50,00. Her best guess is that she can sell 300 cups per week at 0.50 per cup. The variable cost of producing a cup of lemonade is 0.20. a. Given her other assumptions, what level of sales volume will enable Julie to break even? b. Given her other assumptions, discuss how a change in sales volume affects profit. c. Given her other assumptions, discuss how a change in sales volume and variable cost jointly affect profit. d. Use Excels Formula Auditing tools to show which cells in your spreadsheet affect profit directly.21P22P23P24P25PThe file P02_26.xlsx lists sales (in millions of dollars) of Dell Computer during the period 1987-1997 (where year 1 corresponds to 1987). a. Fit a power and an exponential trend curve to these data. Which fits the data better? b. Use your part a answer to predict 1999 sales for Dell. c. Use your part a answer to describe how the sales of Dell have grown from year to year. d. Search the Web for more recent Dell sales data. Then repeat the preceding parts using all of the data.27PThe file P02_28.xlsx gives the annual sales for Microsoft (in millions of dollars) for the years 1984-1993, where 1984 = year 1. a. Fit an exponential curve to these data. b. Assuming you are back in 1993, by what percentage do you estimate that Microsoft has grown each year, based on this historical data? c. Why cant a high rate of exponential growth continue for a long time? d. Rather than an exponential curve, what curve might better represent the growth of a new technology? e. Search the Web for more recent Microsoft sales data. Then repeat the preceding parts using all the data.29PA company manufacturers a product in the United States and sells it in England. The unit cost of manufacturing is 50. The current exchange rate (dollars per pound) is 1.221. The demand function, which indicates how many units the company can sell in England as a function of price (in pounds) is of the power type, with constant 27556759 and exponent 2.4. a. Develop a model for the companys profit (in dollars) as a function of the price it charges (in pounds). Then use a data table to find the profit-maximizing price to the nearest pound. b. If the exchange rate varies from its current value, does the profit-maximizing price increase or decrease? Does the maximum profit increase or decrease?31P32PAssume the demand for a companys drug Wozac during the current year is 50,000, and assume demand will grow at 5% a year. If the company builds a plant that can produce x units of Wozac per year, it will cost 16x. Each unit of Wozac is sold for 3. Each unit of Wozac produced incurs a variable production cost of 0.20. It costs 0.40 per year to operate a unit of capacity. Determine how large a Wozac plant the company should build to maximize its expected profit over the next 10 years.34P35P36P37PSuppose you are borrowing 25,000 and making monthly payments with 1% interest. Show that the monthly payments should equal 556.11. The key relationships are that for any month t (Ending month t balance) = (Ending month t 1 balance) ((Monthly payment) (Month t interest)) (Month t interest) = (Beginning month t balance) (Monthly interest rate) Of course, the ending month 60 balance must equal 0.You are thinking of starting Peaco, which will produce Peakbabies, a product that competes with Tys Beanie Babies. In year 0 (right now), you will incur costs of 4 million to build a plant. In year 1, you expect to sell 80,000 Peakbabies for a unit price of 25. The price of 25 will remain unchanged through years 1 to 5. Unit sales are expected to grow by the same percentage (g) each year. During years 1 to 5, Peaco incurs two types of costs: variable costs and SGA (selling, general, and administrative) costs. Each year, variable costs equal half of revenue. During year 1, SGA costs equal 40% of revenue. This percentage is assumed to drop 2% per year, so during year 2, SGA costs will equal 38% of revenue, and so on. Peacos goal is to have profits for years 0 to 5 sum to 0 (ignoring the time value of money). This will ensure that the 4 million investment in year 0 is paid back by the end of year 5. What annual percentage growth rate g does Peaco require to pay back the plant cost by the end of year 5?40PThe file P02_41.xlsx contains the cumulative number of bits (in trillions) of DRAM (a type of computer memory) produced and the price per bit (in thousandth of a cent). a. Fit a power curve that can be used to show how price per bit drops with increased production. This relationship is known as the learning curve. b. Suppose the cumulative number of bits doubles. Create a prediction for the price per bit. Does the change in the price per bit depend on the current price?42P43PThe IRR is the discount rate r that makes a project have an NPV of 0. You can find IRR in Excel with the built-in IRR function, using the syntax =IRR(range of cash flows). However, it can be tricky. In fact, if the IRR is not near 10%, this function might not find an answer, and you would get an error message. Then you must try the syntax =IRR(range of cash flows, guess), where guess" is your best guess for the IRR. It is best to try a range of guesses (say, 90% to 100%). Find the IRR of the project described in Problem 34. 34. Consider a project with the following cash flows: year 1, 400; year 2, 200; year 3, 600; year 4, 900; year 5, 1000; year 6, 250; year 7, 230. Assume a discount rate of 15% per year. a. Find the projects NPV if cash flows occur at the ends of the respective years. b. Find the projects NPV if cash flows occur at the beginnings of the respective years. c. Find the projects NPV if cash flows occur at the middles of the respective years.A project does not necessarily have a unique IRR. (Refer to the previous problem for more information on IRR.) Show that a project with the following cash flows has two IRRs: year 1, 20; year 2, 82; year 3, 60; year 4, 2. (Note: It can be shown that if the cash flow of a project changes sign only once, the project is guaranteed to have a unique IRR.)46P1CThe eTech Company is a fairly recent entry in the electronic device area. The company competes with Apple. Samsung, and other well-known companies in the manufacturing and sales of personal handheld devices. Although eTech recognizes that it is a niche player and will likely remain so in the foreseeable future, it is trying to increase its current small market share in this huge competitive market. Jim Simons, VP of Production, and Catherine Dolans, VP of Marketing, have been discussing the possible addition of a new product to the companys current (rather limited) product line. The tentative name for this new product is ePlayerX. Jim and Catherine agree that the ePlayerX, which will feature a sleeker design and more memory, is necessary to compete successfully with the big boys, but they are also worried that the ePlayerX could cannibalize sales of their existing productsand that it could even detract from their bottom line. They must eventually decide how much to spend to develop and manufacture the ePlayerX and how aggressively to market it. Depending on these decisions, they must forecast demand for the ePlayerX, as well as sales for their existing products. They also realize that Apple. Samsung, and the other big players are not standing still. These competitors could introduce their own new products, which could have very negative effects on demand for the ePlayerX. The expected timeline for the ePlayerX is that development will take no more than a year to complete and that the product will be introduced in the market a year from now. Jim and Catherine are aware that there are lots of decisions to make and lots of uncertainties involved, but they need to start somewhere. To this end. Jim and Catherine have decided to base their decisions on a planning horizon of four years, including the development year. They realize that the personal handheld device market is very fluid, with updates to existing products occurring almost continuously. However, they believe they can include such considerations into their cost, revenue, and demand estimates, and that a four-year planning horizon makes sense. In addition, they have identified the following problem parameters. (In this first pass, all distinctions are binary: low-end or high-end, small-effect or large-effect, and so on.) In the absence of cannibalization, the sales of existing eTech products are expected to produce year I net revenues of 10 million, and the forecast of the annual increase in net revenues is 2%. The ePIayerX will be developed as either a low-end or a high-end product, with corresponding fixed development costs (1.5 million or 2.5 million), variable manufacturing costs ( 100 or 200). and selling prices (150 or 300). The fixed development cost is incurred now, at the beginning of year I, and the variable cost and selling price are assumed to remain constant throughout the planning horizon. The new product will be marketed either mildly aggressively or very aggressively, with corresponding costs. The costs of a mildly aggressive marketing campaign are 1.5 million in year 1 and 0.5 million annually in years 2 to 4. For a very aggressive campaign, these costs increase to 3.5 million and 1.5 million, respectively. (These marketing costs are not part of the variable cost mentioned in the previous bullet; they are separate.) Depending on whether the ePlayerX is a low-end or high-end produce the level of the ePlayerXs cannibalization rate of existing eTech products will be either low (10%) or high (20%). Each cannibalization rate affects only sales of existing products in years 2 to 4, not year I sales. For example, if the cannibalization rate is 10%, then sales of existing products in each of years 2 to 4 will be 10% below their projected values without cannibalization. A base case forecast of demand for the ePlayerX is that in its first year on the market, year 2, demand will be for 100,000 units, and then demand will increase by 5% annually in years 3 and 4. This base forecast is based on a low-end version of the ePlayerX and mildly aggressive marketing. It will be adjusted for a high-end will product, aggressive marketing, and competitor behavior. The adjustments with no competing product appear in Table 2.3. The adjustments with a competing product appear in Table 2.4. Each adjustment is to demand for the ePlayerX in each of years 2 to 4. For example, if the adjustment is 10%, then demand in each of years 2 to 4 will be 10% lower than it would have been in the base case. Demand and units sold are the samethat is, eTech will produce exactly what its customers demand so that no inventory or backorders will occur. Table 2.3 Demand Adjustments When No Competing Product Is Introduced Table 2.4 Demand Adjustments When a Competing Product Is Introduced Because Jim and Catherine are approaching the day when they will be sharing their plans with other company executives, they have asked you to prepare an Excel spreadsheet model that will answer the many what-if questions they expect to be asked. Specifically, they have asked you to do the following: You should enter all of the given data in an inputs section with clear labeling and appropriate number formatting. If you believe that any explanations are required, you can enter them in text boxes or cell comments. In this section and in the rest of the model, all monetary values (other than the variable cost and the selling price) should be expressed in millions of dollars, and all demands for the ePlayerX should be expressed in thousands of units. You should have a scenario section that contains a 0/1 variable for each of the binary options discussed here. For example, one of these should be 0 if the low-end product is chosen and it should be 1 if the high-end product is chosen. You should have a parameters section that contains the values of the various parameters listed in the case, depending on the values of the 0/1 variables in the previous bullet For example, the fixed development cost will be 1.5 million or 2.5 million depending on whether the 0/1 variable in the previous bullet is 0 or 1, and this can be calculated with a simple IF formula. You can decide how to implement the IF logic for the various parameters. You should have a cash flows section that calculates the annual cash flows for the four-year period. These cash flows include the net revenues from existing products, the marketing costs for ePlayerX, and the net revenues for sales of ePlayerX (To calculate these latter values, it will help to have a row for annual units sold of ePlayerX.) The cash flows should also include depreciation on the fixed development cost, calculated on a straight-line four-year basis (that is. 25% of the cost in each of the four years). Then, these annual revenues/costs should be summed for each year to get net cash flow before taxes, taxes should be calculated using a 32% tax rate, and taxes should be subtracted and depreciation should be added back in to get net cash flows after taxes. (The point is that depreciation is first subtracted, because it is not taxed, but then it is added back in after taxes have been calculated.) You should calculate the company's NPV for the four-year horizon using a discount rate of 10%. You can assume that the fixed development cost is incurred now. so that it is not discounted, and that all other costs and revenues are incurred at the ends of the respective years. You should accompany all of this with a line chart with three series: annual net revenues from existing products; annual marketing costs for ePlayerX; and annual net revenues from sales of ePlayerX. Once all of this is completed. Jim and Catherine will have a powerful tool for presentation purposes. By adjusting the 0/1 scenario variables, their audience will be able to see immediately, both numerically and graphically, the financial consequences of various scenarios.1P2P3P4P5P6P7P8P9P10P11P12P13P14P15P16P17PThe Pigskin Company produces footballs. Pigskin must decide how many footballs to produce each month. The company has decided to use a six-month planning horizon. The forecasted monthly demands for the next six months are 10,000, 15,000, 30,000, 35,000, 25,000, and 10,000. Pigskin wants to meet these demands on time, knowing that it currently has 5000 footballs in inventory and that it can use a given months production to help meet the demand for that month. (For simplicity, we assume that production occurs during the month, and demand occurs at the end of the month.) During each month there is enough production capacity to produce up to 30,000 footballs, and there is enough storage capacity to store up to 10,000 footballs at the end of the month, after demand has occurred. The forecasted production costs per football for the next six months are 12.50, 12.55, 12.70, 12.80, 12.85, and 12.95, respectively. The holding cost incurred per football held in inventory at the end of any month is 5% of the production cost for that month. (This cost includes the cost of storage and also the cost of money tied up in inventory.) The selling price for footballs is not considered relevant to the production decision because Pigskin will satisfy all customer demand exactly when it occursat whatever the selling price is. Therefore. Pigskin wants to determine the production schedule that minimizes the total production and holding costs. Can you guess the results of a sensitivity analysis on the initial inventory in the Pigskin model? See if your guess is correct by using SolverTable and allowing the initial inventory to vary from 0 to 10,000 in increments of 1000. Keep track of the values in the decision variable cells and the objective cell.The Pigskin Company produces footballs. Pigskin must decide how many footballs to produce each month. The company has decided to use a six-month planning horizon. The forecasted monthly demands for the next six months are 10,000, 15,000, 30,000, 35,000, 25,000, and 10,000. Pigskin wants to meet these demands on time, knowing that it currently has 5000 footballs in inventory and that it can use a given months production to help meet the demand for that month. (For simplicity, we assume that production occurs during the month, and demand occurs at the end of the month.) During each month there is enough production capacity to produce up to 30,000 footballs, and there is enough storage capacity to store up to 10,000 footballs at the end of the month, after demand has occurred. The forecasted production costs per football for the next six months are 12.50, 12.55, 12.70, 12.80, 12.85, and 12.95, respectively. The holding cost incurred per football held in inventory at the end of any month is 5% of the production cost for that month. (This cost includes the cost of storage and also the cost of money tied up in inventory.) The selling price for footballs is not considered relevant to the production decision because Pigskin will satisfy all customer demand exactly when it occursat whatever the selling price is. Therefore. Pigskin wants to determine the production schedule that minimizes the total production and holding costs. Modify the Pigskin model so that there are eight months in the planning horizon. You can make up reasonable values for any extra required data. Dont forget to modify range names. Then modify the model again so that there are only four months in the planning horizon. Do either of these modifications change the optima] production quantity in month 1?The Pigskin Company produces footballs. Pigskin must decide how many footballs to produce each month. The company has decided to use a six-month planning horizon. The forecasted monthly demands for the next six months are 10,000, 15,000, 30,000, 35,000, 25,000, and 10,000. Pigskin wants to meet these demands on time, knowing that it currently has 5000 footballs in inventory and that it can use a given months production to help meet the demand for that month. (For simplicity, we assume that production occurs during the month, and demand occurs at the end of the month.) During each month there is enough production capacity to produce up to 30,000 footballs, and there is enough storage capacity to store up to 10,000 footballs at the end of the month, after demand has occurred. The forecasted production costs per football for the next six months are 12.50, 12.55, 12.70, 12.80, 12.85, and 12.95, respectively. The holding cost incurred per football held in inventory at the end of any month is 5% of the production cost for that month. (This cost includes the cost of storage and also the cost of money tied up in inventory.) The selling price for footballs is not considered relevant to the production decision because Pigskin will satisfy all customer demand exactly when it occursat whatever the selling price is. Therefore. Pigskin wants to determine the production schedule that minimizes the total production and holding costs. As indicated by the algebraic formulation of the Pigskin model, there is no real need to calculate inventory on hand after production and constrain it to be greater than or equal to demand. An alternative is to calculate ending inventory directly and constrain it to be nonnegative. Modify the current spreadsheet model to do this. (Delete rows 16 and 17, and calculate ending inventory appropriately. Then add an explicit non-negativity constraint on ending inventory.)21P22P23P24P25P26P27P28P29P30P31P32P33P34P35P36P37P38P39P40P41P42P43P44P45P46P47P48P49P50P51P52P1C1P2P3P4P5P6P7P8P9P10P11P12P13P14P15P16P17P18P19P20P21P22P23P24P25P26P27P28P29P30P31P32P33P34P35P36P37P38P39P40P41P42P43P44P45P46P47P48P49P50P51P52P53P54P55P56P57P58P59P60P61P62P63P64P65P66P67P68P69P70P71P72P73P74P75P76P77P78P79P80PYou want to take out a 450,000 loan on a 20-year mortgage with end-of-month payments. The annual rate of interest is 3%. Twenty years from now, you will need to make a 50,000 ending balloon payment. Because you expect your income to increase, you want to structure the loan so at the beginning of each year, your monthly payments increase by 2%. a. Determine the amount of each years monthly payment. You should use a lookup table to look up each years monthly payment and to look up the year based on the month (e.g., month 13 is year 2, etc.). b. Suppose payment each month is to be the same, and there is no balloon payment. Show that the monthly payment you can calculate from your spreadsheet matches the value given by the Excel PMT function PMT(0.03/12,240, 450000,0,0).82P83P84P85P86P87P88P89P90P91P92P93P94P95P96P97P98P99P100P101P102P103P104P105P106P107P108P109P110P111P112P113P114P115P116P117P118P119P120P121P122P123P124P125P126P127P128P129P130P131P132P133P134P135P1P2P3P4P5P6P7P8P9P10P11P12P13P14P15P16P17P18P19P20P21P22P23P24P25P26P27P28P29P30P31P32P33P34P35P36P37P38P42P43P44P45P46P47P48P49P50P51P52P53P54P55P56P57P58P59P60P61P62P63P64P65P66P67P
Page: [1][2][3]